Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Self-interacting diffusions

Self-interacting diffusions

Author(s)
Benaim, Michel  
Chaire de probabilités  
Ledoux, Michel
Raimond, Olivier
Date issued
2002
In
Probability Theory and Related Fields
Vol
1
No
122
From page
1
To page
41
Subjects
REINFORCED RANDOM-WALK STOCHASTIC-APPROXIMATION ALGORITHMS ASYMPTOTIC-BEHAVIOR
Abstract
This paper is concerned with a general class of self-interacting diffusions [X-t}(tgreater than or equal to0) living oil a compact Riemannian manifold M. These are solutions to stochastic differential equations of the form : dX(t) = Brownian increments + drift term depending on X-t and mu(t), the normalized occupation measure of the process. It is proved that the asymptotic behavior of {mu(t)} can be precisely related to the asymptotic behavior of a deterministic dynamical semi-flow Phi = {Phi(t)}(tgreater than or equal to0) defined on the space of the Borel probability measures on M. In particular, the limit sets of {mu(t)} are proved to be almost surely attractor free sets for Phi. These results are applied to several examples of self-attracting/repelling diffusions on the n-sphere. For instance, in the case of self-attracting diffusions, our results apply to prove that {mu(t)} can either converge toward the normalized Riemannian measure, or to a gaussian measure, depending on the value of a parameter measuring the strength of the attraction.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/56162
DOI
10.1007/s004400100161
File(s)
Loading...
Thumbnail Image
Download
Name

s004400100161.pdf

Type

Main Article

Size

338.16 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new