Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Multiphase Transport of Tritium in Unsaturated Porous Media—Bare and Vegetated Soils

Multiphase Transport of Tritium in Unsaturated Porous Media—Bare and Vegetated Soils

Author(s)
Jiménez-Martínez, J
Tamoh, K
Candela, L
Elorza, F.J
Hunkeler, Daniel  
Laboratoire d'hydrochimie et de contaminants  
Date issued
2012
In
Mathematical Geosciences, Springer, 2012/44/2/187-208
Subjects
Re-emission Effective diffusion Natural attenuation Unsaturated zone Tritium Multiphase transport
Abstract
Tritium is a short-lived radioactive isotope (<i>T</i><sub>1/2</sub> = 12.33 yr) produced naturally in the atmosphere by cosmic radiation but also released into the atmosphere and hydrosphere by nuclear activities (nuclear power stations, radioactive waste disposal). Tritium of natural or anthropogenic origin may end up in soils through tritiated rain, and may eventually appear in groundwater. Tritium in groundwater can be re-emitted to the atmosphere through the vadose zone. The tritium concentration in soil varies sharply close to the ground surface and is very sensitive to many interrelated factors like rainfall amount, evapotranspiration rate, rooting depth and water table position, rendering the modeling a rather complex task. Among many existing codes, SOLVEG is a one-dimensional numerical model to simulate multiphase transport through the unsaturated zone. Processes include tritium diffusion in both, gas and liquid phase, advection and dispersion for tritium in liquid phase, radioactive decay and equilibrium partitioning between liquid and gas phase. For its application with bare or vegetated (perennial vegetation or crops) soil surfaces and shallow or deep groundwater levels (contaminated or non-contaminated aquifer) the model has been adapted in order to include ground cover, root growth and root water uptake. The current work describes the approach and results of the modeling of a tracer test with tritiated water (7.3 × 10<sup>8</sup> Bq m<sup>−3</sup>) in a cultivated soil with an underlying 14 m deep unsaturated zone (non-contaminated). According to the simulation results, the soil’s natural attenuation process is governed by evapotranspiration and tritium reemission. The latter process is due to a tritium concentration gradient between soil air and an atmospheric boundary layer at the soil surface. Re-emission generally occurs during night time, since at day time it is coupled with the evaporation process.Evapotranspiration and re-emission removed considerable quantities of tritium and limited penetration of surface-applied tritiated water in the vadose zone to no more than ∼1–2 m. After a period of 15 months tritium background concentration in soil was attained.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/56788
DOI
10.1007/s11004-012-9383-8
-
https://libra.unine.ch/handle/123456789/4250
File(s)
Loading...
Thumbnail Image
Download
Name

Jimenez-Martinez_J-Multiphase_Transport_of_Tritium-20170914.pdf

Type

Main Article

Size

1.03 MB

Format

Adobe PDF

Checksum

(MD5):0cbdf1fb392dcd99811cb42a3a9aa471

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

v2.0.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new