Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Thèse de doctorat (doctoral thesis)
  4. Bornes supérieures pour les valeurs propres des opérateurs naturels sur des variétés riemanniennes compactes

Bornes supérieures pour les valeurs propres des opérateurs naturels sur des variétés riemanniennes compactes

Author(s)
Hassannezhad, Asma
Editor(s)
Colbois, Bruno  
Chaire de géométrie  
El Soufi, Ahmad
Ranjbar-Motlagh, Alireza
Date issued
2012
Subjects
Riemann, Variétés de Schrödinger, Opérateur de Laplacien Valeurs propres Opérateur de Laplace operateur de Schrödinger opérateur de Laplace Barky-Emery valeurs propres borne supérieure volume confrome minimal nombre d'intersection moyenne Laplace-Beltrami operator Schrödinger operator Bakry-Emery Laplace operator eigenvalue upper bound min-conformal volume mean intersection index
Abstract
The purpose of this thesis is to find upper bounds for the eigenvalues of natural operators acting on functions on a compact Riemannian manifold (<i>M</i>, <i>g</i>) such as the Laplace-Beltrami operator and Laplace-type operators. In the case of the Laplace-Beltrami operator, two aspects are investigated: The first aspect is to study relationships between the intrinsic geometry and eigenvalues of the Laplace-Beltrami operator. In this regard, we obtain upper bounds depending only on the dimension and a conformal invariant called min-conformal volume. Asymptotically, these bounds are consistent with the Weyl law. They improve previous results by Korevaar and Yang and Yau. The proof relies on the construction of a suitable family of disjoint domains providing supports for a family of test functions. This method is powerful and interesting in itself. <br> The second aspect is to study the interplay of the extrinsic geometry and eigenvalues of the Laplace-Beltrami operator acting on compact submanifolds of <i>R</i><sup>N</sup> and of <i>CP</i><sup>N</sup>. We investigate an extrinsic invariant called the intersection index studied by Colbois, Dryden and El Soufi. For compact submanifolds of <i>R</i><sup>N</sup>, we extend their results and obtain upper bounds which are stable under small perturbation. For compact submanifolds of <i>CP</i><sup>N</sup> we obtain an upper bound depending only on the degree of submanifolds and which is sharp for the first eigenvalue. <br> As a further application of the introduced method, we obtain an upper bound for the eigenvalues of the Steklov problem in a domain with <i>C</i><sup>1</sup> boundary in a complete Riemannian manifold in terms of the isoperimetric ratio of the domain and the min-conformal volume. A modification of our method also leads to have upper bounds for the eigenvalues of Schrödinger operators in terms of the min-conformal volume and integral quantity of the potential. As another application of our method, we obtain upper bounds for the eigenvalues of the Bakry-Emery Laplace operator depending on conformal invariants and properties of the weighted function.
Notes
Thèse de doctorat : Université de Neuchâtel, 2012
Publication type
doctoral thesis
Identifiers
https://libra.unine.ch/handle/20.500.14713/30150
DOI
10.35662/unine-thesis-2282
File(s)
Loading...
Thumbnail Image
Download
Name

00002282.pdf

Type

Main Article

Size

987.45 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new