Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Near-optimal Optimistic Reinforcement Learning using Empirical Bernstein Inequalities

Near-optimal Optimistic Reinforcement Learning using Empirical Bernstein Inequalities

Author(s)
Aristide Tossou
Debabrota Basu
Dimitrakakis, Christos  
Chaire de science des données  
Date issued
2019
In
Computing Research Repository (CoRR)
Vol
1905.12425
Subjects
Machine Learning (cs.LG) Artificial Intelligence (cs.AI) Computer Science and Game Theory (cs.GT) Machine Learning
Abstract
We study model-based reinforcement learning in an unknown finite communicating Markov decision process. We propose a simple algorithm that leverages a variance based confidence interval. We show that the proposed algorithm, UCRL-V, achieves the optimal regret O~(DSAT−−−−−−√) up to logarithmic factors, and so our work closes a gap with the lower bound without additional assumptions on the MDP. We perform experiments in a variety of environments that validates the theoretical bounds as well as prove UCRL-V to be better than the state-of-the-art algorithms.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/64474
DOI
10.48550/arXiv.1905.12425
-
arXiv:1905.12425v2
-
https://libra.unine.ch/handle/123456789/30972
File(s)
Loading...
Thumbnail Image
Download
Name

1905.12425.pdf

Type

Main Article

Size

1.99 MB

Format

Adobe PDF

Checksum

(MD5):1ab246ef28bc76d0bbd8152338df16ec

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

v2.0.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new