Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Capacité et inégalité de Faber-Krahn dans Rn

Capacité et inégalité de Faber-Krahn dans Rn

Author(s)
Bertrand, Jérôme
Colbois, Bruno  
Chaire de géométrie  
Date issued
April 18, 2006
In
Journal of Functional Analysis
Vol
1
No
232
From page
1
To page
28
Subjects
capacity eigenvalue estimates convergence of the spectrum DIRICHLET EIGENVALUES DOMAINS HOLES
Abstract
In this paper, we define a new capacity which allows us to control the behaviour of the Dirichlet spectrum of a compact Riemannian manifold with boundary, with "small" subsets (which may intersect the boundary) removed. This result generalises a classical result of Rauch and Taylor ("the crushed ice theorem"). In the second part, we show that the Dirichlet spectrum of a sequence of bounded Euclidean domains converges to the spectrum of a ball with the same volume, if the first eigenvalue of these domains converges to the first eigenvalue of a ball.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/55313
Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2026 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new