Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. On the Spectrum of the Sum of Generators for a Finitely Generated Group
 
  • Details
Options
Vignette d'image

On the Spectrum of the Sum of Generators for a Finitely Generated Group

Auteur(s)
De La Harpe, Pierre
Robertson, Guyan
Valette, Alain 
Institut de mathématiques 
Date de parution
1993
In
Israel Journal of Mathematics
Vol.
1-2
No
81
De la page
65
A la page
96
Mots-clés
  • LOCALLY COMPACT-GROUPS
  • INFINITE-GRAPHS
  • REPRESENTATIONS
  • LOCALLY COMPACT-GROUP...

  • INFINITE-GRAPHS

  • REPRESENTATIONS

Résumé
Let GAMMA be a finitely generated group. In the group algebra C[T], form the average h of a finite set S of generators of GAMMA. Given a unitary representation pi of GAMMA, we relate spectral properties of the operator pi(h) to ProPerties Of GAMMA and pi. For the universal representation pi(un) of GAMMA, we prove in particular the following results. First, the spectrum Sp(pi(un) (h)) contains the complex number , of modulus one iff Sp(pi(un) (h)) is invariant under multiplication by z, iff there exists a character x: GAMMA --> T such that chi(S) = {z}. Second, for S-1 = S, the group GAMMA has Kazhdan's proPertY (T) if and only if 1 is isolated in Sp(pi(un) (h)); in this case, the distance between 1 and other point, of the spectrum gives a lower bound on the Kazhdan constants. Numerous examples illustrate the results.
Identifiants
https://libra.unine.ch/handle/123456789/13890
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00