Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Stochastic approximation algorithms with constant step size whose average is cooperative
 
  • Details
Options
Vignette d'image

Stochastic approximation algorithms with constant step size whose average is cooperative

Auteur(s)
Benaim, Michel 
Institut de mathématiques 
Hirsch, Morris W
Date de parution
1999
In
Annals of Applied Probability
Vol.
1
No
9
De la page
216
A la page
241
Mots-clés
  • stochastic approximation
  • ordinary differential equation method
  • cooperative vector fields
  • large deviations
  • weak convergence
  • theory
  • of learning in games
  • DIFFERENTIAL-EQUATIONS
  • URN PROCESSES
  • CONVERGENCE
  • SYSTEMS
  • SETS
  • stochastic approximat...

  • ordinary differential...

  • cooperative vector fi...

  • large deviations

  • weak convergence

  • theory

  • of learning in games

  • DIFFERENTIAL-EQUATION...

  • URN PROCESSES

  • CONVERGENCE

  • SYSTEMS

  • SETS

Résumé
We consider stochastic approximation algorithms with constant step size whose average ordinary differential equation (ODE) is cooperative and irreducible. We show that, under mild conditions on the noise process, invariant measures and empirical occupations measures of the process weakly converge (as the time goes to infinity and the step size goes to zero) toward measures which are supported by stable equilibria of the ODE. These results are applied to analyzing the long-term behavior of a class of learning processes arising in game theory.
Identifiants
https://libra.unine.ch/handle/123456789/6240
Type de publication
journal article
Dossier(s) à télécharger
 main article: 1029962603.pdf (196.28 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00