Options
Approaches for cloudification of complex high performance simulation systems
Auteur(s)
Mots-clés
systèmes distribués
calcul à haute perfor...
calcul en nuage
déroulement scientifi...
big data
architecture orienté ...
Apache Spark
réseau maillé sans fi...
distributed systems
high performance comp...
cloud computing
scientific workflows
big data (BD)
service-oriented arch...
Apache Spark
wireless mesh network...
Résumé
Le calcul scientifique est souvent associé à un besoin de ressources toujours croissant pour réaliser des expériences, des simulations et obtenir des résultats dans un temps raisonnable. Même si une infrastructure locale peut offrir de bonnes performances, sa limite est souvent atteinte par les chercheurs. Pour subvenir à ces besoins en constante augmentation, une solution consiste à déléguer une partie de ces tâches à un environnement en nuage. Dans cette thèse, nous nous intéresserons au problème de la migration vers des environnements en nuage d’applications scientifiques basées sur le standard MPI. En particulier, nous nous concentrerons sur les simulateurs scientifiques qui implémentent la méthode itérative Monte Carlo. Pour résoudre le problème identifié, nous (a) donnerons un aperçu des domaines du calcul en nuage et du calcul à haute performance, (b) analyserons les types de problèmes actuels liés à la simulation, (c) présenterons un prototype de simulateur Monte Carlo, (d) présenterons deux méthodes de cloudification, (e) appliquerons ces méthodes au simulateur Monte Carlo, et (f) évaluerons l’application de ces méthodes à un exemple d’utilisation réelle., Scientific computing is often associated with ever-increasing need for computer resources to conduct experiments, simulations and gain outcomes in a reasonable time frame. While local infrastructures could hold substantial computing power and capabilities, researchers may still reach the limit of available resources. With continuously increasing need for higher computing power, one of the solutions could be to offload certain resource-intensive applications to a cloud environment with resources available on-demand. In this thesis, we will address the problem of migrating MPI-based scientific applications to clouds. Specifically, we will concentrate on scientific simulators, which implement the iterative Monte Carlo method. <br> To tackle the identified problem, we will (a) overview high performance and cloud computing domains, (b) analyze existing simulation problem types, (c) introduce an example Monte Carlo simulator, (d) present two cloudification methodologies, (e) apply the methodologies to the example simulator, and (f) evaluate the potential application of methodologies in a real case study.
Notes
Thèse de doctorat : Université de Neuchâtel, 2017
Identifiants
Type de publication
doctoral thesis
Dossier(s) à télécharger