Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Bayesian inverse problem and optimization with iterative spatial resampling
 
  • Details
Options
Vignette d'image

Bayesian inverse problem and optimization with iterative spatial resampling

Auteur(s)
Mariethoz, Grégoire 
Centre d'hydrogéologie et de géothermie 
Renard, Philippe 
Centre d'hydrogéologie et de géothermie 
Caers, Jef
Date de parution
2010-1-10
In
Water Resources Research
Vol.
11
No
46
De la page
1
A la page
17
Résumé
Measurements are often unable to uniquely characterize the subsurface at a desired modeling resolution. In particular, inverse problems involving the characterization of hydraulic properties are typically ill‐posed since they generally present more unknowns than data. In a Bayesian context, solutions to such problems consist of a posterior ensemble of models that fit the data (up to a certain precision specified by a likelihood function) and that are a subset of a prior distribution. Two possible approaches for this problem are Markov chain Monte Carlo (McMC) techniques and optimization (calibration) methods. Both frameworks rely on a perturbation mechanism to steer the search for solutions. When the model parameters are spatially dependent variable fields obtained using geostatistical realizations, such as hydraulic conductivity or porosity, it is not trivial to incur perturbations that respect the prior spatial model. To overcome this problem, we propose a general transition kernel (iterative spatial resampling, ISR) that preserves any spatial model produced by conditional simulation. We also present a stochastic stopping criterion for the optimizations inspired from importance sampling. In the studied cases, this yields
posterior distributions reasonably close to the ones obtained by a rejection sampler, but with a greatly reduced number of forward model runs. The technique is general in the sense that it can be used with any conditional geostatistical simulation method, whether it generates continuous or discrete variables. Therefore it allows sampling of different priors and conditioning to a variety of data types. Several examples are provided based on either multi Gaussian or multiple point statistics.
URI
https://libra.unine.ch/handle/123456789/21175
Type de publication
Resource Types::text::journal::journal article
Dossier(s) à télécharger
 main article: 2023-01-10_110_3585.pdf (4.5 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCID

Adresse:
UniNE, Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel

Construit avec Logiciel DSpace-CRIS Maintenu et optimiser par 4Sciences

  • Paramètres des témoins de connexion
  • Politique de protection de la vie privée
  • Licence de l'utilisateur final