Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Generalized Spatial Regression with Differential Penalization
 
  • Details
Options
Vignette d'image

Generalized Spatial Regression with Differential Penalization

Auteur(s)
Wilhelm, Matthieu 
Institut de statistique 
Sangalli, Laura M.
Date de parution
2013-9-9
Résumé
We introduce a novel method for the analysis of spatially distributed data from an exponential family distribution, able to efficiently deal with data occurring over irregularly shaped domains. The proposed generalized additive framework can handle all distributions within the exponential family, including binomial, Poisson and gamma outcomes, hence leading to a very broad applicability of the model. Specifically, we maximize a penalized log-likelihood function where the roughness penalty term involves a suitable differential operator of the spatial field over the domain of interest. Space-varying covariate information can also be included in the model in a semiparametric setting. The proposed model exploits advanced scientific computing techniques and specifically makes use of the Finite Element Method, that provide a basis for piecewise polynomial surfaces.
Notes
, SCo 2013- Complex data modeling and computationally intensive statistical methods, Milano
Identifiants
https://libra.unine.ch/handle/123456789/19215
Type de publication
conference presentation
Dossier(s) à télécharger
 main article: 2013-12-03_1819_8099.pdf (91.06 KB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00