Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Spatiotemporal reconstruction of gaps in multivariate fields using the direct sampling approach
 
  • Details
Options
Vignette d'image

Spatiotemporal reconstruction of gaps in multivariate fields using the direct sampling approach

Auteur(s)
Mariethoz, Grégoire 
Centre d'hydrogéologie et de géothermie 
Editeur(s)
McCabe, Matthew F
Renard, Philippe 
Centre d'hydrogéologie et de géothermie 
In
Water Resources Research, Wiley-Blackwell, 2012/48//W10507
Résumé
The development of spatially continuous fields from sparse observing networks is an outstanding problem in the environmental and Earth sciences. Here we explore an approach to produce spatially continuous fields from discontinuous data that focuses on reconstructing gaps routinely present in satellite-based Earth observations. To assess the utility of the approach, we use synthetic imagery derived from a regional climate model of southeastern Australia. Orbital tracks, scan geometry influences, and atmospheric artifacts are artificially imposed upon these model simulations to examine the techniques' capacity to reproduce realistic and representative retrievals. The imposed discontinuities are reconstructed using a direct sampling technique and are compared against the original continuous model data: a synthetic simulation experiment. Results indicate that the multipoint geostatistical gap-filling approach produces texturally realistic spatially continuous fields from otherwise discontinuous data sets. Reconstruction results are assessed through comparison of spatial distributions, as well as through visual assessment of fine-scale features. Complex spatial patterns and fine-scale structure can be resolved within the reconstructions, illustrating that the often nonlinear dependencies between variables can be maintained. The stochastic nature of the methodology makes it possible to expand the approach within a Monte Carlo framework in order to estimate the uncertainty related to subsequent reconstructions. From a practical perspective, the reconstruction method is straightforward and requires minimum user intervention for parameter adjustment. As such, it can be automated to systematically process real time remote sensing measurements.
URI
https://libra.unine.ch/handle/123456789/9231
DOI
10.1029/2012WR012115
Autre version
http://dx.doi.org/10.1029/2012WR012115
Type de publication
Resource Types::text::journal::journal article
Dossier(s) à télécharger
 main article: Mariethoz_Gregoire-Spatiotemporal_reconstruction_of_gaps_n_multivariate_fields-20130607.pdf (9.77 MB)
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCID

Adresse:
UniNE, Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel

Construit avec Logiciel DSpace-CRIS Maintenu et optimiser par 4Sciences

  • Paramètres des témoins de connexion
  • Politique de protection de la vie privée
  • Licence de l'utilisateur final