Voici les éléments 1 - 10 sur 40
  • Publication
    Accès libre
    Fractal characteristics of fractures in crystalline basement rocks: Insights from depth-dependent correlation analyses to 5 km depth
    (2022-5-27)
    Afshari Moein, Mohammad Javad
    ;
    Evans, Keith F.
    ;
    ;
    Bär, Kristian
    ;
    Genter, Albert
    The scaling laws describing the spatial arrangement of fractures along six deep boreholes penetrating the crystalline rocks in the Rhine Graben were derived using a correlation analysis. Five of the wells, two to 5 km depth, were located at the Soultz geothermal site and one well to 5 km depth was located at Basel, some 150 km from Soultz. Five datasets were derived from borehole imaging logs, whilst one stemmed from the analysis of 810 m of continuous core at Soultz. The two differed inasmuch as the core dataset included essentially all fractures, whereas the image log dataset had few fractures narrower than 1–3 mm. The results of the analysis for all image datasets showed that the spatial arrangement of fractures followed fractal behavior at all scales from meters to several hundred meters, the largest scale amenable to assessment, and that the fractal dimensions were confined to the narrow range 0.85–0.9. However, the core dataset showed significant deviation from fractal behavior, the best-fit fractal dimension of 0.8 being somewhat lower than values obtained from imaging logs in neighboring wells. Eliminating fractures with apertures less than 1 mm from the core dataset to improve comparability led to even lower fractal dimension estimates, indicating the discrepancy was not due to imaging log resolution. Analysis of successive depth sections of the core log suggested the discrepancy was due to the presence of a localized zone between 1750 and 2070 m where the fractal organization is disturbed or takes a lower dimension than elsewhere. Aside from this zone, no systematic variation of fractal dimension with depth was observed in any dataset, implying that a single exponent together with intensity adequately describes the arrangement of fractures along the entire length of the boreholes. The results are relevant to the parameterization of DFN models of deep rock masses.
  • Publication
    Accès libre
    A systematic methodology to calibrate wellbore failure models, estimate the in-situ stress tensor and evaluate wellbore cross-sectional geometry
    (2022-1-1) ; ;
    Meier, Peter
    ;
    ;
    Alcolea, Andres
    Deep geothermal boreholes, often drilled to the crystalline basement, suffer from borehole breakouts that compromise borehole stability and/or lead to low drilling performance. These issues increase the cost of deep geothermal projects and lead to irregular cross-sectional geometries that may entangle well completion (e.g., packer isolation for zonal stimulation, cementing, etc.). Thus, the proper knowledge of rock strength, state of stress and their interactions at the closest vicinity of the borehole is key to the success of deep geothermal drilling. Typically, the magnitudes of the vertical and minimum horizontal principal stresses, 𝑆𝑣 and 𝑆ℎ𝑚𝑖𝑛, respectively, can be estimated while 𝑆𝐻𝑚𝑎𝑥 is difficult to constrain. This paper presents a systematic methodology to jointly evaluate the heterogeneous distributions of the stress tensor principal components and orientations, and the rock strength properties (e.g. cohesion, friction). Model parameters are estimated from measurements available during or shortly after drilling, i.e., breakout width, breakout extent/depth of penetration, breakout orientation and drilling induced tensile fractures. Additionally, measurements of estimated parameters or transformations of them can be considered in the calibration in a generic manner (e.g., 𝑆ℎ𝑚𝑖𝑛 interpreted from XLOT). For illustration purposes, the methodology is applied to the extensive borehole data set along the crystalline section of the borehole BS-1, in Basel (Switzerland). The methodology allows us (1) to derive plausible sets of stress and strength parameters reproducing the complex distribution of breakouts along BS-1, and (2) to unveil the paradox of having no borehole breakouts at sections with high density of natural fractures.
  • Publication
    Accès libre
    Aseismic deformations perturb the stress state and trigger induced seismicity during injection experiments
    (2021-10)
    Duboeuf, L.
    ;
    De Barros, L.
    ;
    ;
    Guglielmi, Y.
    ;
    Cappa, F.
    ;
    Fluid injections can trigger seismicity even on faults that are not optimally oriented for reactivation, suggesting either sufficiently large fluid pressure or local stress perturbations. Understanding how stress field may be perturbed during fluid injections is crucial in assessing the risk of induced seismicity and the efficiency of deep fluid stimulation projects. Here, we focus on a series of in situ decametric experiments of fluid-induced seismicity, performed at 280 m depth in an underground gallery, while synchronously monitoring the fluid pressure and the activated fractures movements. During the injections, seismicity occurred on existing natural fractures and bedding planes that aremisoriented to slip relative to the background stress state,whichwas determined from the joint inversion of downhole fluid pressure and mechanical displacements measured at the injection.We then compare this background stress with the one estimated from the inversion of earthquake focal mechanisms. We find significant différences in the orientation of the stress tensor components, thus highlighting local perturbations. After discussing the influence of the gallery, the pore pressure variation and the geology, we show that the significant stress perturbations induced by the aseismic deformation (which represents more than 96 per cent of the total deformation) trigger the seismic reactivation of fractures with different orientations.
  • Publication
    Accès libre
    Evaluation of the Diametrical Core Deformation and Discing Analyses for In‑Situ Stress Estimation and Application to the 4.9 km Deep Rock Core from the Basel Geothermal Borehole, Switzerland
    (2021-9-14)
    Ziegler, Martin
    ;
    The in situ state of rock mass stresses is a key design parameter, e.g., for deep engineered geothermal systems. However, knowledge of the stress state at great depths is sparse mostly because of the lack of possible in situ tests in deep boreholes. Among different options, core-based in situ stress estimation may provide valuable stress information though core-based techniques have not yet become a standard. In this study we focus on the Diametrical Core Deformation Analysis (DCDA) technique using monzogranitic to monzonitic rock drill cores from 4.9 km depth of the Basel-1 borehole in Switzerland. With DCDA the maximum and minimum horizontal stress (SHmax and Shmin) directions, and the horizontal differential stress magnitudes (∆S) can be estimated from rock cores extracted from vertical boreholes. Our study has three goals: first, to assess photogrammetric core scanning to conduct DCDA; second, to compare DCDA results with borehole breakout and stress-induced core discing fracture (CDF) data sets; and third, to investigate the impact of rock elastic anisotropy on ∆S. Our study reveals that photogrammetric scanning can be used to extract reliable core diametrical data and CDF traces. Locally aligned core pieces showed similar SHmax orientations, conform to borehole breakout results. However, the variability of core diametrical differences was large for the Basel-1 core pieces, which leads to a large spread of ∆S. Finally, we demonstrate that core elastic anisotropy must be considered, requiring robust estimates of rock elastic moduli, to receive valuable stress information from DCDA analyses.
  • Publication
    Accès libre
    Poroelasticity Contributes to Hydraulic-Stimulation Induced Pressure Changes
    (2021-2) ; ;
    Amann, F.
    ;
    Jalali, M.
    ;
    Villiger, L.
    ;
    Krietsch, H.
    ;
    Gischig, V.
    ;
    Doetsch, J.
    ;
    Giardini, D.
    High-pressure fluid injections cause transient pore pressure changes over large distances, which may induce seismicity. The zone of influence for such an injection was studied at high spatial esolutions in six decameter-scaled fluid injection experiments in crystalline rock. Pore pressure time series revealed two distinct responses based on the lag time and magnitude of pressure change, namely, a near- and far-field response. The near-field response is due to pressure diffusion. In the far-field, the fast response time and decay of pressure changes are produced by effective stress changes in the anisotropic stress field. Our xperiments confirm that fracture fluid pressure perturbations around the injection point are not limited to the near field and can extend beyond the pressurized zone.
  • Publication
    Accès libre
    In situ observation of helium and argon release during fluid-pressure triggered rock deformation
    (2020-10)
    Roques, C.
    ;
    Weber, U. W.
    ;
    Brixel, B.
    ;
    Krietsch, H.
    ;
    ;
    Brennwald, M. S.
    ;
    Villiger, L.
    ;
    Doetsch, J.
    ;
    Jalali, M.
    ;
    Gischig, V.
    ;
    Amann, F.
    ;
    ;
    Klepikova, M.
    ;
    Kipfer, R.
    Temporal changes in groundwater chemistry can reveal information about the evolution of flow path connectivity during crustal deformation. Here, we report transient helium and argon concentration anomalies monitored during a series of hydraulic reservoir stimulation experiments measured with an in situ gas equilibrium membrane inlet mass spectrometer. Geodetic and seismic analyses revealed that the applied stimulation treatments led to the formation of new fractures (hydraulic fracturing) and the reactivation of natural fractures (hydraulic shearing), both of which remobilized (He, Ar)-enriched fluids trapped in the rock mass. Our results demonstrate that integrating geochemical information with geodetic and seismic data provides critical insights to understanding dynamic changes in fracture network connectivity during reservoir stimulation. The results of this study also shed light on the linkages between fluid migration, rock deformation and seismicity at the decameter scale.
  • Publication
    Accès libre
    Hydromechanical processes and their influence on the stimulation effected volume: observations from a decameter-scale hydraulic stimulation project
    (2020-9-4)
    Krietsch, Hannes
    ;
    Gischig, Valentin
    ;
    Doetsch, J.
    ;
    Evans, Keith F.
    ;
    Villiger, Linus
    ;
    Jalali, Mohammadreza
    ;
    ;
    Loew, Simon
    ;
    Amann, Florian
    Six hydraulic shearing experiments have been conducted in the framework of the In-situ Stimulation and Circulation experiment within a decameter-scale crystalline rock volume at the Grimsel Test Site, Switzerland. During each experiment fractures associated with one out of two shear zone types were hydraulically reactivated. The two shear zone types differ in terms of tectonic genesis and architecture. An extensive monitoring system of sensors recording seismicity, pressure and strain was spatially distributed in 11 boreholes around the injection locations. As a result of the stimulation, the near-wellbore transmissivity increased up to 3 orders in magnitude. With one exception, jacking pressures were unchanged by the stimulations. Transmissivity change, jacking pressure and seismic activity were different for the two shear zone types, suggesting that the shear zone architectures govern the seismo-hydromechanical response. The elevated fracture fluid pressures associated with the stimulations propagated mostly along the stimulated shear zones. The absence of high-pressure signals away from the injection point for most experiments (except two out of six experiments) is interpreted as channelized flow within the shear zones. The observed deformation field within 15–20 m from the injection point is characterized by variable extensional and compressive strain produced by fracture normal opening and/or slip dislocation, as well as stress redistribution related to these processes. At greater distance from the injection location, strain measurements indicate a volumetric compressive zone, in which strain magnitudes decrease with increasing distance. These compressive strain signals are interpreted as a poro-elastic far-field response to the emplacement of fluid volume around the injection interval. Our hydromechanical data reveal that the overall stimulation effected volume is significantly larger than implied by the seismicity cloud and can be subdivided into a primary stimulated and secondary effected zone.
  • Publication
    Accès libre
    Hydromechanical insight of fracture opening and closure during in-situ hydraulic fracturing in crystalline rock
    (2020-9) ; ;
    Gischig, V.
    ;
    Jalali, M.
    ;
    Brixel, B.
    ;
    Krietsch, H.
    ;
    Roques, C.
    ;
    Amann, F.
    Six hydraulic fracturing (HF) experiments were conducted in situ at the Grimsel Test Site (GTS), Switzerland, using two boreholes drilled in sparsely fractured crystalline rock. High spatial and temporal resolution monitoring of fracture fluid pressure and strain improve our understanding of fracturing dynamics during and directly following high-pressure fluid injection. In three out of the six experiments, a shear-thinning fluid with an initial static viscosity approximately 30 times higher than water was used to understand the importance of fracture leak-off better. Diagnostic analyses of the shut-in phases were used to determine the minimum principal stress magnitude for the fracture closure cycles, yielding an estimate of the effective instantaneous shut-in pressure (effective ISIP) 4.49±0.22 MPa. The jacking pressure of the hydraulic fracture was measured during the pressurecontrolled step-test. A new method was developed using the uniaxial Fibre-Bragg Grating strain signals to estimate the jacking pressure, which agrees with the traditional flow versus pressure method. The technique has the advantage of observing the behavior of natural fractures next to the injection interval. The experiments can be divided into two groups depending on the injection location (i.e., South or North to a brittle-ductile S3 shear zone). The experiments executed South of this zone have a jacking pressure above the effective ISIP. The proximity to the S3 shear zone and the complex geological structure led to near-wellbore tortuosity and heterogeneous stress effects masking the jacking pressure. In comparison, the experiments North of the S3 shear zone has a jacking pressure below the effective ISIP. This is an effect related to shear dislocation and fracture opening. Both processes can occur almost synchronously and provide new insights into the complicated mixedmode deformation processes triggered by high-pressure injection.
  • Publication
    Accès libre
    In Situ Direct Displacement Information on Fault Reactivation During Fluid Injection
    (2020-8) ;
    Guglielmi, Y.
    ;
    Nussbaum, Ch.
    ;
    The three dimensional (3D) displacement induced by fluid injection was measured during two fault reactivation experiments conducted in carbonate rocks at the Rustrel Low Noise Underground Laboratory (LSBB URL), France, and in shale rocks at the Mont Terri Rock laboratory, Switzerland. The faults were activated by injecting high pressure fluid and using the Step-Rate Injection Method for Fracture In-Situ Properties, which allows a coupled pressure-flowrate-3D displacement monitoring in boreholes. Both experiments mainly show complex aseismic deformation of preexisting fractures that depend on (1) the fluid pressure variations related to chamber pressurization and leakage into the formation and (2) irreversible shear slip and opening of the reactivated fractures. Here we detail the processing of the 3D displacement data from both experiments to isolate slip vectors from the complex displacement signal. Firstly, we explain the test protocol and describe the in situ hydromechanical behavior of the borehole/fault system. Secondly, we define the methodology of the displacement data processing to isolate slip vectors with high displacement rates, which carry information about the key orientation of fault reactivation. Finally, we discuss which slip vectors can potentially be used to solve the stress inversion problem.
  • Publication
    Accès libre
    Influence of reservoir geology on seismic response during decameter-scale hydraulic stimulations in crystalline rock
    (2020-4-28)
    Villiger, Linus
    ;
    Gischig, Valentin
    ;
    Doetsch, J.
    ;
    Krietsch, Hannes
    ;
    ;
    Jalali, Mohammadreza
    ;
    ;
    Selvedurai, P. A.
    ;
    Mignan, Arnaud
    ;
    Plenkers, K.
    ;
    Giardini, Domenico
    ;
    Amann, Florian
    ;
    Wiemer, Stefan
    We performed a series of 12 hydraulic stimulation experiments in a 20 m×20 m×20 m foliated, crystalline rock volume intersected by two distinct fault sets at the Grimsel Test Site, Switzerland. The goal of these experiments was to improve our understanding of stimulation processes associated with high-pressure fluid injection used for reservoir creation in enhanced or engineered geothermal systems. In the first six experiments, pre-existing fractures were stimulated to induce shear dilation and enhance permeability. Two types of shear zones were targeted for these hydroshearing experiments: (i) ductile ones with intense foliation and (ii) brittle–ductile ones associated with a fractured zone. The second series of six stimulations were performed in borehole intervals without natural fractures to initiate and propagate hydraulic fractures that connect the wellbore to the existing fracture network. The same injection protocol was used for all experiments within each stimulation series so that the differences observed will give insights into the effect of geology on the seismo-hydromechanical response rather than differences due to the injection protocols. Deformations and fluid pressure were monitored using a dense sensor network in boreholes surrounding the injection locations. Seismicity was recorded with sensitive in situ acoustic emission sensors both in boreholes and at the tunnel walls. We observed high variability in the seismic response in terms of seismogenic indices, b values, and spatial and temporal evolution during both hydroshearing and hydrofracturing experiments, which we attribute to local geological heterogeneities. Seismicity was most pronounced for injections into the highly conductive brittle–ductile shear zones, while the injectivity increase on these structures was only marginal. No significant differences between the seismic response of hydroshearing and hydrofracturing was identified, possibly because the hydrofractures interact with the same pre-existing fracture network that is reactivated during the hydroshearing experiments. Fault slip during the hydroshearing experiments was predominantly aseismic. The results of our hydraulic stimulations indicate that stimulation of short borehole intervals with limited fluid volumes (i.e., the concept of zonal insulation) may be an effective approach to limit induced seismic hazard if highly seismogenic structures can be avoided.