Voici les éléments 1 - 5 sur 5
  • Publication
    Métadonnées seulement
    Plant species variation in bottom-up effects across three trophic levels: a test of traits and mechanisms
    (2015-7-21)
    Moreira, Xoaquin
    ;
    Abdala-Roberts, Luis
    ;
    Hernandez-Cumplido, Johnattan
    ;
    ;
    Kenyon, Sarah G
    ;
  • Publication
    Métadonnées seulement
    The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes (Marschner Review for the "Rhizosphere 3" Special Issue)
    Background Entomopathogenic nematodes (EPNs) are tiny parasitic worms that parasitize insects, in which they reproduce. Their foraging behavior has been subject to numerous studies, most of which have proposed that, at short distances, EPNs use chemicals that are emitted directly from the host as host location cues. Carbon dioxide (CO2) in particular has been implicated as an important cue. Recent evidence shows that at longer distances several EPNs take advantage of volatiles that are specifically emitted by roots in response to insect attack. Studies that have revealed these plant-mediated interactions among three trophic levels have been met with some disbelief. Scope This review aims to take away this skepticism by summarizing the evidence for a role of root volatiles as foraging cues for EPNs. To reinforce our argument, we conducted olfactometer assays in which we directly compared the attraction of an EPN species to CO2 and two typical inducible root volatiles. Conclusions The combination of the ubiquitous gas and a more specific root volatile was found to be considerably more attractive than one of the two alone. Hence, future studies on EPN foraging behavior should take into account that CO2 and plant volatiles may work in synergy as attractants for EPNs. Recent research efforts also reveal prospects of exploiting plant-produced signals to improve the biological control of insect pests in the rhizosphere.
  • Publication
    Métadonnées seulement
    The Role of Root-Produced Volatile Secondary Metabolites in Mediating Soil Interactions
    (Croatia: InTech Open Access Publisher, 2012) ; ;
    Ali, Jared G
    ;
    Montanaro, Giuseppe
    ;
    Dichio, Bartolomeo
  • Publication
    Métadonnées seulement
    Recruitment of entomopathogenic nematodes by insect-damaged maize roots
    (2005-4-7) ;
    Köllner, Tobias G
    ;
    Degenahrdt, Jörg
    ;
    ;
    Toepfer, Stefan
    ;
    Kuhlmann, Ulrich
    ;
    Gershenzon, Jonathan
    ;
  • Publication
    Accès libre
    Recruitment of entomopathogenic nematodes by insect-damaged maize roots
    (2005) ;
    Köllner, Tobias G.
    ;
    Degenhardt, Jörg
    ;
    ;
    Toepfer, Stefan
    ;
    Kuhlmann, Ulrich
    ;
    Gershenzon, Jonathan
    ;
    Plants under attack by arthropod herbivores often emit volatile compounds from their leaves that attract natural enemies of the herbivores. Here we report the first identification of an insect-induced belowground plant signal, (E)-β-caryophyllene, which strongly attracts an entomopathogenic nematode. Maize roots release this sesquiterpene in response to feeding by larvae of the beetle Diabrotica virgifera virgifera, a maize pest that is currently invading Europe. Most North American maize lines do not release (E)-β-caryophyllene, whereas European lines and the wild maize ancestor, teosinte, readily do so in response to D. v. virgifera attack. This difference was consistent with striking differences in the attractiveness of representative lines in the laboratory. Field experiments showed a fivefold higher nematode infection rate of D. v. virgifera larvae on a maize variety that produces the signal than on a variety that does not, whereas spiking the soil near the latter variety with authentic (E)-β-caryophyllene decreased the emergence of adult D. v. virgifera to less than half. North American maize lines must have lost the signal during the breeding process. Development of new varieties that release the attractant in adequate amounts should help enhance the efficacy of nematodes as biological control agents against root pests like D. v. virgifera.