Voici les éléments 1 - 2 sur 2
  • Publication
    Métadonnées seulement
    Effects of decomposing cadavers on soil nematode communities over a one-year period
    (2016-12-1) ; ; ; ;
    Steel, Hanne
    ;
    Neilson, Roy
    ;
    Griffiths, Bryan S.
    ;
    Amendt, Jens
    ;
    In terrestrial ecosystems decomposing cadavers act as resource patches affecting nutrient cycling and soil communities, but the effects on soil communities are not well known. In this study we investigated nematode community response to decomposing pig cadavers (Sus scrofa) over a one-year period. As nematodes play key roles in soil food webs and are known to respond to disturbances and nutrient enrichment, we hypothesised that they would respond to decomposing cadavers and that this response would change over time. We compared the temporal patterns of nematode density and community structure under pig cadavers, either placed directly on the ground or hung 1 m aboveground (for effects of cadaveric fluids only), with two controls, i.e., bare soil and bags filled with soil placed on the ground (fake pigs e for microclimatic effects only). In the control and fake pig treatments nematode densities, community patterns and maturity indices did not change significantly. In contrast, density increased significantly underneath the ground and hanging pigs two weeks after the beginning of the experiment, and nematode family richness, Simpson diversity and maturity index were sgnificantly reduced in the cadaver treatments. Most nematode families responded negatively to cadavers with the notable exceptions of Rhabditidae, Neodiplogasteridae and Diplogasteroididae. The latter two were found exclusively underneath the decomposing cadavers and are promising bioindicators of vertebrate cadaver decomposition. Even though diversity, density and communities were recovering after one year, the impact of cadavers was still significant for the maturity index. These contrasting patterns illustrate how decomposing cadavers contribute to increasing local biodiversity and suggest that soil nematodes could be used as a tool to document the presence of a decomposing cadaver, or to estimate the time elapsed since death (post-mortem interval). Patterns should, however, be compared in different settings and seasons before such a tool can be validated.
  • Publication
    Accès libre
    Can soil testate amoebae be used for estimating the time since death?: A field experiment in a deciduous forest
    Estimation of the post-mortem interval (PMI, the time interval between death and recovery of a body) can be crucial in solving criminal cases. Today minimum PMI calculations rely mainly on medical and entomological evidence. However, beyond 4–6 weeks even entomological methods become less accurate. Thus additional tools are needed. Cadaveric fluids released by decomposing cadavers modify the soil environment and thus impact soil organisms, which may thus be used to estimate the PMI. Although the response of bacteria or fungi to the presence of a corpse has been studied, to the best of our knowledge nothing is known about other soil organisms. Testate amoebae, a group of shelled protozoa, are sensitive bioindicators of soil physico-chemical and micro-climatic conditions and are therefore good potential PMI indicators. We investigated the response of testate amoebae to three decomposing pig cadavers, and compared the pattern to two controls each, bare soils and fake cadavers, in a beach-oak forest near Neuchâtel, Switzerland. Forest litter samples collected in the three treatments over 10 months were analysed by microscopy. The pig treatment significantly impacted the testate amoeba community: after 22 and 33 days no living amoeba remained underneath the pig cadavers. Communities subsequently recovered but 10 months after the beginning of the experiment recovery was not complete. The fake cadavers also influenced the testate amoeba communities by altering the soil microclimate during a dry hot period, but less than the cadavers. These results confirm the sensitivity of soil testate amoebae to micro-climatic conditions and show that they respond fast to the presence of cadavers – and that this effect although decreasing over time lasts for months, possibly several years. This study therefore confirms that soil protozoa could potentially be useful as forensic indicators, especially in cases with a longer PMI.