Voici les éléments 1 - 3 sur 3
  • Publication
    Accès libre
    Missing data simulation inside flow rate time-series using multiple-point statistics
    The direct sampling (DS) multiple-point statistical technique is proposed as a non-parametric missing data simulator for hydrological flow rate time-series. The algorithm makes use of the patterns contained inside a training data set to reproduce the complexity of the missing data. The proposed setup is tested in the reconstruction of a flow rate time-series while considering several missing data scenarios, as well as a comparative test against a time-series model of type ARMAX. The results show that DS generates more realistic simulations than ARMAX, better recovering the statistical content of the missing data. The predictive power of both techniques is much increased when a correlated flow rate time-series is used, but DS can also use incomplete auxiliary time-series, with a comparable prediction power. This makes the technique a handy simulation tool for practitioners dealing with incomplete data sets.
  • Publication
    Accès libre
    Simulation of rainfall time series from different climatic regions using the direct sampling technique
    The direct sampling technique, belonging to the family of multiple-point statistics, is proposed as a nonparametric alternative to the classical autoregressive and Markov-chain-based models for daily rainfall time-series simulation. The algorithm makes use of the patterns contained inside the training image (the past rainfall record) to reproduce the complexity of the signal without inferring its prior statistical model: the time series is simulated by sampling the training data set where a sufficiently similar neighborhood exists. The advantage of this approach is the capability of simulating complex statistical relations by respecting the similarity of the patterns at different scales. The technique is applied to daily rainfall records from different climate settings, using a standard setup and without performing any optimization of the parameters. The results show that the overall statistics as well as the dry/wet spells patterns are simulated accurately. Also the extremes at the higher temporal scale are reproduced adequately, reducing the well known problem of overdispersion.
  • Publication
    Accès libre
    Simulation of rainfall time series from different climatic regions using the direct sampling technique
    The direct sampling technique, belonging to the family of multiple-point statistics, is proposed as a nonparametric alternative to the classical autoregressive and Markovchain-based models for daily rainfall time-series simulation. The algorithm makes use of the patterns contained inside the training image (the past rainfall record) to reproduce the complexity of the signal without inferring its prior statistical model: the time series is simulated by sampling the training data set where a sufficiently similar neighborhood exists. The advantage of this approach is the capability of simulating complex statistical relations by respecting the similarity of the patterns at different scales. The technique is applied to daily rainfall records from different climate settings, using a standard setup and without performing any optimization of the parameters. The results show that the overall statistics as well as the dry/wet spells patterns are simulated accurately. Also the extremes at the higher temporal scale are reproduced adequately, reducing the well known problem of overdispersion.