Voici les éléments 1 - 9 sur 9
  • Publication
    Accès libre
    Influence of surface water – groundwater interactions on the spatial distribution of pesticide metabolites in groundwater
    In groundwater, pesticidemetabolites tend to occurmore frequently and at higher concentrations than their parent pesticides, due to their highermobility and persistence. These properties might also favor their transfer across surface water – groundwater interfaces. However, the effect of surface water – groundwater interactions on the metabolite occurrence in groundwater and pumpingwells has so far received little attention.Weinvestigated the spatial distribution of metabolites in an unconsolidated aquifer, which interacts with two surface water bodies originating from catchments with contrasting land use. We focused onmetabolites of the herbicide chloridazon, namely desphenyl-chloridazon (DPC) and methyl-desphenyl-chloridazon (MDPC) and characterized surface water – groundwater interactions with various environmental tracers (e.g. electrical conductivity, stable water isotopes,wastewater tracers). In zones influenced by a river fromamountainous area,metabolite concentrations were low(median values ≤0.50 μg L−1 for DPC, ≤0.19 μg L−1 forMDPC). In contrast, high concentrations occurred in areas dominated by recharge fromagricultural fields and/or influenced by a streamfroman adjacent intensely farmed catchment (median values up to 1.9 μg L−1 for DPC and up to 0.75 μg L−1 forMDPC). An endmember analysis using hydro-chemical data suggested that about 20% of the DPC mass in a pumping well originated from the neighboring catchment and on its own would cause a concentration above 0.1 μg L−1 for DPC. Our findings highlight that the mobile metabolites can be imported from zones with intense agriculture outside of the exploited aquifer via surface-water groundwater interactions influencing the metabolite concentration level and longterm dynamics in the aquifer.
  • Publication
    Accès libre
    Adsorbing vs. Nonadsorbing tracers for assessing pesticide transport in arable soils
    (2017-9) ;
    Prasuhn, Volker
    ;
    ;
    Spiess, Ernst
    ;
    Melsbach, Aileen
    ;
    Lihl, Christina
    ;
    ;
    Hofstetter, Thomas B.
    ;
    Elsener, Martin
    ;
    The suitability of two different tracers to mimic the behavior of pesticides in agricultural soils and to evidence the potential for preferential flow was evaluated in outdoor lysimeter experiments. The herbicide atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] was used as a model compound. Two tracers were used: a nonadsorbing tracer (bromide) and a weakly adsorbing dye tracer (uranine). Two soils that are expected to show a different extent of macropore preferential flow were used: a well-drained sandy-loamy Cambisol (gravel soil) and a poorly drained loamy Cambisol (moraine soil). Conditions for preferential flow were promoted by applying heavy simulated rainfall shortly after pesticide application. In some of the experiments, preferential flow was also artificially simulated by injecting the solutes through a narrow tube below the root zone. With depth injection, preferential leaching of atrazine occurred shortly after application in both soil types, whereas with surface application, it occurred only in the moraine soil. Thereafter, atrazine transport was mainly through the porous soil matrix, although contributions of preferential flow were also observed. For all the application approaches and soil types, after 900 d, <3% of the applied amount of atrazine was recovered in the drainage water. Only uranine realistically illustrated the early atrazine breakthrough by transport through preferential flow. Uranine broke through during the first intense irrigation at the same time as atrazine. Bromide, however, appeared earlier than atrazine in some cases. The use of dye tracers as pesticide surrogates might assist in making sustainable decisions with respect to pesticide application timing relative to rainfall or soil potential for preferential flow.
  • Publication
    Accès libre
    Review: From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems
    (2012)
    Bertrand, G
    ;
    Goldscheider, Nico
    ;
    ;
    Aquifers provide water, nutrients and energy with various patterns for many aquatic and terrestrial ecosystems. Groundwater-dependent ecosystems (GDEs) are increasingly recognized for their ecological and socio-economic values. The current knowledge of the processes governing the ecohydrological functioning of inland GDEs is reviewed, in order to assess the key drivers constraining their viability. These processes occur both at the watershed and emergence scale. Recharge patterns, geomorphology, internal geometry and geochemistry of aquifers control water availability and nutritive status of groundwater. The interface structure between the groundwater system and the biocenoses may modify the groundwater features by physicochemical or biological processes, for which biocenoses need to adapt. Four major types of aquifer-GDE interface have been described: springs, surface waters, peatlands and terrestrial ecosystems. The ecological roles of groundwater are conditioned by morphological characteristics for spring GDEs, by the hyporheic zone structure for surface waters, by the organic soil structure and volume for peatland GDEs, and by water-table fluctuation and surface floods in terrestrial GDEs. Based on these considerations, an ecohydrological classification system for GDEs is proposed and applied to Central andWestern-Central Europe, as a basis for modeling approaches for GDEs and as a tool for groundwater and landscape management.
  • Publication
    Accès libre
    Intrinsic biodegradation potential of aromatic hydrocarbons in an alluvial aquifer - Potentials and limits of signature metabolite analysis and two stable isotope-based techniques
    (2011)
    Morasch, Barbara
    ;
    ; ;
    Temime, B
    ;
    Höhener, Patrick
    Three independent techniques were used to assess the biodegradation of monoaromatic hydrocarbons and low-molecular weight polyaromatic hydrocarbons in the alluvial aquifer at the site of a former cokery (Flémalle, Belgium).
    Firstly, a stable carbon isotope-based field method allowed quantifying biodegradation of monoaromatic compounds in situ and confirmed the degradation of naphthalene. No evidence could be deduced from stable isotope shifts for the intrinsic biodegradation of larger molecules such as methylnaphthalenes or acenaphthene. Secondly, using signature metabolite analysis, various intermediates of the anaerobic degradation of (poly-) aromatic and heterocyclic compounds were identified. The discovery of a novel metabolite of acenaphthene in groundwater samples permitted deeper insights into the anaerobic biodegradation of almost persistent environmental contaminants. A third method, microcosm incubations with 13C-labeled compounds under in situ-like conditions, complemented techniques one and two by providing quantitative information on contaminant biodegradation independent of molecule size and sorption properties. Thanks to stable isotope labels, the sensitivity of this method was much higher compared to classical microcosm studies. The 13C-microcosm approach allowed the determination of first-order rate constants for 13C-labeled benzene, naphthalene, or acenaphthene even in cases when degradation activities were only small. The plausibility of the third method was checked by comparing 13C-microcosm-derived rates to field-derived rates of the first approach. Further advantage of the use of 13C-labels in microcosms is that novel metabolites can be linked more easily to specific mother compounds even in complex systems. This was achieved using alluvial sediments where 13C-acenaphthyl methylsuccinate was identified as transformation product of the anaerobic degradation of acenaphthene.
  • Publication
    Accès libre
    Evaluating the fate of chlorinated ethenes in streambed sediments by combining stable isotope, geochemical and microbial methods
    (2009)
    Abe, Yumiko
    ;
    Aravena, Ramon
    ;
    ;
    Parker, Beth
    ;
    The occurrence of chlorinated ethene transformation in a streambed was investigated using concentration and carbon isotope data from water samples taken at different locations and depths within a 15×25 ms tudy area across which a tetrachloroethene (PCE) plume discharges. Furthermore, it was evaluated how the degree of transformation is related to groundwater discharge rates, redox conditions, solid organic matter content (SOM) and microbial factors. Groundwater discharge rates were quantified based on streambed temperatures, and redox conditions using concentrations of dissolved redox-sensitive species. The degree of chlorinated ethene transformation was highly variable in space from no transformation to transformation beyond ethene. Complete reductive dechlorination to ethane and ethene occurred at locations with at least sulfate-reducing conditions and with a residence time in the samples streambed zone (80 cm depth) of at least 10 days. Among these locations, Dehalococcoides was detected using a PCR method where SOM contents were >2% w/w and where transformation proceeded beyond ethene. However, it was not detected at locations with low SOM, which may cause an insufficient H2 supply to sustain a detectably dense Dehalococcoides population. Additionally, it is possible that other organisms are responsible for the biodegradation. A microcosm study with streambed sediments demonstrated the potential of VC oxidation throughout the site even at locations without a pre-exposure to VC, consistent with the detection of the epoxyalkane:coenzyme M transferase (EaCoMT) gene involved in the degradation of chlorinated ethenes via epoxidation. In contrast, no aerobic transformation of cDCE in microcosms over a period of 1.5 years was observed. In summary, the study demonstrated that carbon isotope analysis is a sensitive tool to identify the degree of chlorinated ethene transformation even in hydrologically and geochemically complex streambed systems. In addition, it was observed that the degree of transformation is related to redox conditions, which in turn depend on groundwater discharge rates.
  • Publication
    Accès libre
    Carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride and cis-1,2-dichloroethene
    (2009)
    Abe, Yumiko
    ;
    Aravena, Ramon
    ;
    ;
    Shouakar-Stash, O
    ;
    Cox, E
    ;
    Roberts, J.D
    ;
    The study investigated carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride (VC) and cis-1,2-dichloroethene (cDCE). The experimental data followed a Rayleigh trend. For aerobic oxidation, the average carbon isotope enrichment factors were -7.2‰ and-8.5‰ for VC and cDCE, respectively, while average chlorine isotope enrichment factors were only -0.3‰ for both compounds. These values are consistent with an initial transformation by epoxidation for which a significant primary carbon isotope effect and only a small secondary chlorine isotope effect is expected. For reductive dechlorination, larger carbon isotope enrichment factors of -25.2‰ for VC and -18.5‰ for cDCE were observed consistent with previous studies. Although the average chlorine isotope enrichment factors were larger than those of aerobic oxidation (-1.8‰ for VC, -1.5‰ for cDCE), they were not as large as typically expected for a primary chlorine isotope effect suggesting that no cleavage of C-Cl bonds takes place during the initial ratelimiting step. The ratio of isotope enrichment factors for chlorine and carbon were substantially different for the two reaction mechanisms suggesting that the reaction mechanisms can be differentiated at the field scale using a dual isotope approach.
  • Publication
    Accès libre
    Geochemical influences on H40/1 bacteriophage inactivation in glaciofluvial sands
    (2004)
    Flynn, Raymond
    ;
    ;
    Guerin, Christine
    ;
    Burn, Christine
    ;
    Rossi, Pierre
    ;
    Geochemical heterogeneities may cause spatial variations in virus inactivation rates resulting from interactions with minerals leading to differences in natural disinfection capacity within an aquifer. Column studies investigating the interaction of the bacteriophage H40/1 with natural sands sampled from the Kappelen test site (Kappelen), Bern, Switzerland indicated that inactivation rates are higher for adsorbed bacteriophages than for those suspended in groundwater. Moreover, breakthrough curves obtained from field-based tracer tests at Kappelen indicated that the adsorbed H40/1 is inactivated in-situ at comparable rates. Statistical analyses of mineralogical data failed to demonstrate significant spatial variations in aquifer composition either across the site or with depth. In contrast hydrochemical analyses of groundwater samples collected at Kappelen demonstrated that iron-reducing groundwater occurs below aerobic waters. Tracer breakthrough curves indicate that H40/1 survival is not affected by variable redox conditions. Investigation results suggest that spatial geochemical variability does not significantly affect H40/1s inactivation rate at Kappelen.
  • Publication
    Accès libre
    Effect of molecule size on carbon isotope fractionation during biodegradation of chlorinated alkanes by Xanthobacter autotrophicus GJ10
    The effect of the number of carbon and chlorine atoms on carbon isotope fractionation during dechlorination of chlorinated alkanes by Xanthobacter autotrophicus GJ10 was studied using pure culture and cell-free extract experiments. The magnitude of carbon isotope fractionation decreased with increasing carbon number. The decrease can be explained by an increasing probability that the heavy isotope is located at a non-reacting position for increasing molecule size. The isotope data were corrected for the number of carbons as well as the number of reactive sites to obtain reacting-site-specific values denoted as apparent kinetic isotope effect (AKIE). Even after the correction, the obtained AKIE values varied (on average 1.0608, 1.0477, 1.0616, and 1.0555 for 1,2-dichloroethane, chloropentane, 1,3-dichloropentane and chlorobutane, respectively). Cell-free extract experiments were carried out to evaluate the effect of transport across the cell membrane on the observed variability in the AKIE values, which revealed that variability still persisted. The study demonstrates that even after differences related to the carbon number and structure of the molecule are taken into account, there still remain differences in AKIE values even for compounds that are degraded by the same pure culture and an identical reaction mechanism.