Options
Lara, Enrique
Nom
Lara, Enrique
Affiliation principale
Identifiants
Résultat de la recherche
2 Résultats
Voici les éléments 1 - 2 sur 2
- PublicationAccès libreSSU rRNA reveals a sequential increase in shell complexity among the euglyphid testate amoebae (Rhizaria : Euglyphida)(2007)
; ;Heger, Thierry J; ;Meisterfeld, RalfEkelund, FlemmingThe existing data on the molecular phylogeny of filose testate amoebae from order Euglyphida has revealed contradictions between traditional morphological classification and SSU rRNA phylogeny and, moreover, the position of several important genera remained unknown. We therefore carried out a study aiming to fill several important gaps and better understand the relationships among the main euglyphid testate amoebae and the evolutionary steps that led to the present diversity at a higher level. We obtained new SSU rRNA sequences from five genera and seven species. This new phylogeny obtained shows that (1) the clade formed by species of genera Assulina and Placocista branches unambiguously at the base of the subclade of Euglyphida comprising all members of the family Trinematidae and genus Euglypha, (2) family Trinematidae (Trachelocorythion, Trinema, and Corythion) branches as a sister group to genus Euglypha, (3) three newly sequenced Euglypha species (E. cf. ciliata, E. penardi, and E. compressa) form a new clade within the genus. Since our results show that Assulina and Placocista do not belong to the Euglyphidae (unless the Trinematidae are also included in this family), we propose the creation of a new family named Assulinidae. Consequently, we give a family status to the genera Euglypha and (tentatively) Scutiglypha, which become the new family Euglyphidae. The evolutionary pattern suggested by SSU rRNA phylogeny shows a clear tendency towards increasing morphological complexity of the shell characterised by changes in the symmetry (migration of the aperture to a ventral position and/or compression of the shell) and the appearance of specialised scales at the aperture (in families Trinematidae and Euglyphidae). (C) 2007 Elsevier GmbH. All rights reserved. - PublicationAccès libreOne Alga to Rule them All: Unrelated Mixotrophic Testate Amoebae (Amoebozoa, Rhizaria and Stramenopiles) Share the Same Symbiont (Trebouxiophyceae)
;Gomaa, Fatma; ;Heger, Thierry J ;Corsaro, Daniele; Endosymbiosis is a central and much studied process in the evolution of eukaryotes. While plastid evolution in eukaryotic algae has been extensively studied, much less is known about the evolution of mixotrophy in amoeboid protists, which has been found in three of the five super groups of Eukaryotes. We identified the green endosymbionts in four obligate mixotrophic testate amoeba species belonging to three major eukaryotic clades, Hyalosphenia papilio and Heleopera sphagni (Amoebozoa: Arcellinida), Placocista spinosa (Rhizaria: Euglyphida), and Archerella flavum (Stramenopiles: Labyrinthulomycetes) based on rbcL (ribulose-1,5-diphosphate carboxylase/oxygenase large subunit) gene sequences. We further investigated whether there were different phylotypes of algal endosymbionts within single H. papilio cells and the degree of host-symbiont specificity by amplifying two genes: COI (mitochondrial cytochrome oxydase subunit 1) from the testate amoeba host, and rbcL from the endosymbiont. Results show that all studied endosymbionts belong to genus Chlorella sensu stricto, closely related to Paramecium bursaria Chlorella symbionts, some lichen symbionts and also several free-living algae. Most rbcL gene sequences derived from symbionts from all testate amoeba species were almost identical (at most 3 silent nucleotides difference out of 780 bp) and were assigned to a new Trebouxiophyceae taxon we named TACS (Testate Amoeba Chlorella Symbionts). This “one alga fits all mixotrophic testate amoeba” pattern suggests that photosynthetic symbionts have pre-adaptations to endosymbiosis and colonise diverse hosts from a free-living stage.