Voici les éléments 1 - 1 sur 1
  • Publication
    Accès libre
    Semiconductor disk laser-based frequency combs
    Cette thèse présente une étude des premiers peignes de fréquences auto-référencés basés sur des lasers à disques semi-conducteurs (SDLs) à modes verrouillés en phase.
    L’avènement des peignes de fréquences stabilisés basés sur des lasers à impulsions ultra-courtes a permis une avancée significative et de nombreuses applications dans divers domaines de la physique, de la spectroscopie et de la métrologie. Les peignes de fréquences optiques peuvent être utilisés comme une règle de mesure dans le domaine des fréquences fournissant un lien direct et cohérent entre les fréquences optiques et micro-ondes. Bien que les peignes de fréquences optiques aient révolutionné de nombreux domaines scientifiques, ils n'ont pas encore pénétré les marchés à grande échelle. Pour cela, les sources laser doivent être améliorées, en ciblant une haute fiabilité tout en gardant la source compacte et économiquement attractive.
    Les SDLs à impulsions ultra-courtes, également appelés lasers à cavité verticale externe à émission de surface ou VECSELs (de l’anglais vertical external-cavity surface-emitting lasers), constituent une source laser très prometteuse à cet égard de par la technologie des semi-conducteurs qui permet une production de masse à faible coût. Ils rendent possibles des configurations de lasers très compactes et présentent une grande flexibilité dans leur longueur d'onde d’émission grâce à l'ingénierie de bandes. En outre, ils ne souffrent pas d'instabilités de mode déclenché (Q-switching) et un fonctionnement stable en verrouillage de mode a été démontré à des taux de répétition allant de 100 MHz à 100 GHz. Les peignes de fréquences à taux de répétition élevés ont une puissance accrue par mode, ce qui est bénéfique pour des applications telles que l'astronomie ou la génération de signaux micro-ondes à faible bruit.
    La stabilisation des deux degrés de liberté du laser à verrouillage de mode, la fréquence de répétition et la fréquence du décalage de phase entre la porteuse et l'enveloppe (carrier-envelope offset en anglais, CEO) est nécessaire pour la plupart des applications. Cependant, la détection de la fréquence CEO est difficile et aucune stabilisation n'avait été obtenue auparavant pour un laser à semi-conducteur à impulsions ultra-courtes. La détection de la fréquence CEO est généralement effectuée à l'aide d'une méthode d'auto-référencement qui nécessite un spectre cohérent couvrant une octave de fréquence. Ce dernier peut être généré en utilisant des fibres optiques hautement non linéaires telles que des fibres à cristaux photoniques (photonic crystal fibers en anglais, PCFs). Afin de maintenir la cohérence durant le processus d'élargissement spectral, des impulsions ultra-courtes dans le domaine des femtosecondes (typiquement <200 fs) avec une puissance de crête de l’ordre du kilowatt sont nécessaires. Cependant, même si des puissances maximales allant jusqu'à 6.3 kW et des durées d'impulsion allant jusqu'à 96 fs ont été démontrées pour des SDLs, la combinaison des deux n'a pas encore été atteinte. Par conséquent, la génération d’un spectre d'une octave utilisant une PCF directement à partir de la sortie du laser n'a pas pu être démontrée jusqu'à présent et des étapes supplémentaires d'amplification et de compression des impulsions sont nécessaires.
    Dans ce travail, un amplificateur à fibre a été développé permettant la première démonstration de stabilisation de la fréquence CEO d'un SDL à impulsions ultra-courtes. Les impulsions amplifiées ont été comprimées temporellement et couplées dans une PCF pour la génération cohérente d’un spectre supercontinuum couvrant une octave. Une technique d'auto-référencement permet la détection et la stabilisation de la fréquence CEO via une modulation de la puissance de la diode de pompe du laser. Ce résultat démontre la faisabilité d'un peigne de fréquences basé sur la technologie SDL et constitue une étape importante dans le développement des peignes de fréquences compacts.
    Finalement, une conversion de longueur d'onde à l’aide d’un oscillateur paramétrique optique a été étudiée, permettant de surmonter les limites actuelles de la longueur d'onde d'émission atteignable avec des SDL à impulsions ultra-courtes. L'émission dans l'infrarouge moyen est très intéressante car un grand nombre de molécules ont de fortes transitions rotationnelles-vibrationnelles dans cette gamme spectrale et le développement de peignes de fréquences dans l'infrarouge moyen permet l’accès à des méthodes de détection de spectroscopie moléculaire simples, rapides et très sensibles., This thesis studies the first self-referenced frequency combs based on modelocked semiconductor disk lasers (SDLs).
    The generation of stabilized frequency combs based on ultrafast lasers has been a significant breakthrough for many applications in various fields of physics, spectroscopy and metrology. Optical frequency combs can serve as a frequency ruler that provides a direct and phase-coherent link between optical and microwave frequencies. Despite the fact that optical frequency combs revolutionized numerous scientific areas, so far, they have not entered large-scale markets. For this, comb laser sources have to be improved, targeting high reliability, while keeping the source compact and cost-efficient.
    Ultrafast SDLs, also referred to as vertical external-cavity surface-emitting lasers (VECSELs), are a very promising technology for this purpose as they are based on the semiconductor technology, allowing for low-cost wafer-scale mass-production. They enable very compact laser setups and have large emission wavelengths flexibility inherited from the band-gap engineering. In addition, they do not suffer from Q-switching instabilities and stable fundamental modelocking was demonstrated at repetition rates ranging from 100 MHz to 100 GHz. High repetition rate frequency combs have an increased power per comb line that is beneficial for applications such as astronomy or low-noise microwave generation.
    The stabilization of the two degrees of freedom of the modelocked laser, the repetition frequency and the carrier-envelope offset (CEO) frequency is required for most comb applications. However, the detection of the CEO frequency is challenging and no stabilization was achieved before for any ultrafast semiconductor laser. The CEO detection is usually done using a self-referencing scheme that requires a coherent octave-spanning spectrum, which can be generated using highly nonlinear fibers such as photonic crystal fibers (PCFs). In order to maintain the coherence in the spectral broadening process, ultrashort femtosecond pulses (typically <200 fs) with kilowatt peak power are required. However, even though peak powers up to 6.3 kW and pulse durations down to 96 fs have been demonstrated in SDLs, the combination of both has still not been reached. Therefore, the octave-spanning spectrum generation in a PCF directly from the output of the laser could not be demonstrated until now and additional amplification and compression stages are necessary.
    In this work, an efficient fiber amplifier has been developed, which led to the first demonstration of the CEO frequency stabilization of an ultrafast SDL. The amplified pulses were temporally compressed and sent to a commercially available PCF for the coherent octave-spanning supercontinuum spectrum generation. A self-referencing scheme enabled the CEO detection and stabilization via a modulation of the pump power. This result demonstrates the feasibility of a frequency comb based on the SDL technology and constitutes an important step in the further development of compact frequency combs.
    Finally, wavelength conversion in an optical parametric oscillator is studied to overcome the current limitations in the emission wavelength of ultrafast SDLs. Emission in the mid-infrared is highly attractive since a large number of molecules have strong rotational-vibrational transitions in this spectral range and the development of mid-infrared frequency combs enables simple, fast and highly sensitive molecular spectroscopy sensing methods.