Voici les éléments 1 - 10 sur 11
  • Publication
    Métadonnées seulement
    Long-Term Stability Analysis Towards < 10-14 Level for a Highly Compact POP Rb Cell Atomic Clock
    Long-term frequency instabilities in vapor-cell clocks mainly arise from fluctuations of the experimental and environmental parameters that are converted to clock frequency fluctuations via various physical processes. Here, we discuss the frequency sensitivities and the resulting stability limitations at one day timescale for a rubidium vapor-cell clock based on a compact magnetron-type cavity operated in air (no vacuum environment). Under ambient laboratory conditions, the external atmospheric pressure fluctuations may dominantly limit the clock stability via the barometric effect. We establish a complete long-term instability budget for our clock operated under stable pressure conditions. Where possible, the fluctuations of experimental parameters are measured via the atomic response. The measured clock instability of < 2·E10.14 at one day is limited by the intensity light-shift effect, which could further be reduced by active stabilization of the laser intensity or stronger optical pumping. The analyses reported here show the way towards simple, compact, and low-power vapor-cell atomic clocks with excellent long-term stabilities. ≤ 10.14 at one day when operated in ambient laboratory conditions.
  • Publication
    Accès libre
    Rubidium vapour-cell frequency standards: metrology of optical and microwave frequency references
    Cette thèse porte sur le développement, l'étude et l'optimisation de références de fréquence compactes de hautes performances à base de cellules de vapeur de rubidium (Rb)1. Plus particulièrement, deux références de fréquence à cellules à vapeur de Rb sont étudiées : une référence de fréquence optique à 1,5 μm et une horloge atomique à double résonance à pompage optique pulsé (POP). L'utilisation de cellules à vapeur permet de réaliser des références de fréquence compactes (i.e. dans un volume de quelques litres) ayant une stabilité de fréquence relative (1) pour une horloge atomique micro-onde au niveau de 1×10-14 à 1 jour (équivalent à 1 ns/jour) et (2) pour la référence optique au niveau de 1×10-11 à 1 jour (équivalent à environ 4 kHz/jour). Ces références de fréquence compactes peuvent être utilisées dans l'industrie, les télécommunications, la navigation ou comme référence de fréquence optique embarquée (par ex. LIDAR).
    La première partie de cette thèse évalue la stabilité de fréquence à moyen et long terme d'une horloge atomique POP compacte de haute performance. Cela consiste à évaluer la sensibilité de la fréquence de l'horloge aux grandeurs pertinentes : fluctuations de fréquence et d'intensité du laser (effets de décalage de fréquence due à lumière (LS)), puissance micro-onde (décalages de fréquence due à la puissance micro-ondes), et effets environnementaux (effets barométriques, température). L'impact de telles perturbations est quantifié en utilisant (1) un coefficient de sensibilité, ou coefficient de décalage de fréquence, défini comme la variation de la fréquence d'horloge par rapport au paramètre physique perturbateur (par exemple une variation de puissance σp), ΔVclock/Δp; et (2) l'amplitude des fluctuations du paramètre physique perturbateur lui-même évalué à différentes échelles de temps, σpΤ). Les coefficients de sensibilité de l'effet LS et du décalage due à la puissance micro-onde sont minimisés, contribuant à l'instabilité de fréquence de l'horloge en dessous de 10-14 dans le long terme (fluctuation de fréquence relative).
    Un effet barométrique est démontré dans les étalons de fréquence à cellule de vapeur. La fluctuation naturelle de la pression atmosphérique déforme la cellule en verre, ce qui modifie la pression interne du gaz. Il en résulte un couplage de la fréquence de l'horloge avec la pression atmosphérique. Le phénomène est caractérisé expérimentalement et théoriquement, et la contribution de l'effet barométrique est réduite en dessous de 10-14. En minimisant l'effet barométrique, la sensibilité à la puissance micro-ondes et l'effet LS, on démontre une stabilité de fréquence de notre prototype d'horloge POP de 1×10-14 (fluctuation de fréquence relative) à 104 secondes de temps d'intégration.
    Des études plus fondamentales sont menées sur l'origine du décalage de fréquence dû à la puissance micro-onde pour notre prototype d'horloge POP. L'impact de l'inhomogénéité du champ (champ lumineux et champ micro-ondes) sur le signal de Ramsey et la fréquence de l'horloge est étudié numériquement. Sur la base de la distribution d'amplitude du champ micro-onde simulée dans la cellule de l'horloge, le signal de Ramsey mesuré et ses propriétés (contraste, largeur totale à mi-hauteur (FWHM)) sont reproduits par simulations.
    La validation de la production additive (impression 3D) pour la fabrication des cavités micro-ondes complexes est démontrée. L'horloge POP et ses possibilités (grâce à l'interrogation pulsée) est utilisée pour évaluer l'homogénéité et la distribution du champ micro-onde de la cavité micro-onde. On démontre que la distribution du champ micro-onde de la cavité fabriqué par impression 3D est équivalente au champ micro-onde d'une cavité de fabrication conventionnelle. De plus, on présente une stabilité de fréquence horloge au niveau de l'état de l'art obtenu avec une horloge ayant une cavité micro-onde fabriquée par impression 3D.
    Les études présentées dans cette thèse sont des étapes importantes vers une meilleure compréhension des horloges atomiques à double résonance. L'identification de la principale source d'instabilité de fréquence à long terme (l'effet barométrique) et sa réduction en dessous d'une instabilité de fréquence relative de 10-14 permet de comparer notre prototype d'horloge atomique avec l'état de l'art des horloges atomiques compactes et à haute performance. De plus, ce niveau d'instabilité de fréquence permet de mener de nouvelles études sur les phénomènes physiques auxquels l'horloge atomique est moins sensible. La stabilité de fréquence d'horloge obtenue avec l'horloge possédant une cavité fabriquée par impression 3D est une étape importante vers la commercialisation d'horloges atomiques Rb à double résonance.
    La deuxième partie de cette thèse porte sur les références de fréquence optique utilisent une cellule à vapeur de Rb pour la stabilisation en fréquence des lasers à 780 nm, 1560 nm et 1572 nm. Un laser maître de 1560 nm a été stabilisé en fréquence sur une cellule de vapeur de Rb à 780 nm par doublement de fréquence. Un générateur de peigne de fréquence optique a été utilisé pour combler l'espace de 12 nm entre 1572 nm et le laser à 1560 nm. Le système laser a été conçu pour être une référence de fréquence embarquée à 1572 nm pour un système LIDAR spatial ou pour faire du pompage optique pour les horloges atomiques à cellules Rb. La stabilité de fréquence démontrée du laser à 1572 nm est inférieure à 3×10-11 (équivalent à 5,8 kHz à 1572 nm) à toutes les échelles de temps et atteint 4×10-12 (équivalent à 760 Hz à 1572 nm) à long terme. En outre, la reproductibilité et la répétabilité du schéma de stabilisation de fréquence du laser maître ont été évaluées. La dégradation du bruit de fréquence et du bruit d'intensité par le processus de doublage de fréquence a également été évaluée. La caractérisation des références de fréquence optique permet d'identifier les futurs axes de recherche pour l'application de ces références optiques pour le pompage optique dans les horloges atomiques ou comme références de fréquence embarqué (LIDAR spatial).
    1 Ces travaux ont été menés au Laboratoire Temps-Fréquence de l'Université de Neuchâtel. Ces travaux ont été soutenus par le Fonds national suisse de la recherche scientifique (FNS) : "Precision double-resonance spectroscopy and metrology with stabilised lasers and atomic vapours : applications for atomic clocks and magnetometers" n°. 156621 (2015-2019)., This thesis concerns the development, study, and optimisation of compact and high-performance frequency references based on rubidium (Rb) vapour cells1. More specially, two Rb vapour-cell frequency references are studied: an optical-frequency reference at 1.5 μm and a double-resonance pulsed optically pumped (POP) atomic clock. The use of vapour cells allows compact frequency references (typically a volume of few litres) and with relative frequency stability (1) for a microwave atomic clock at the level of 1×10-14 at 1 day (equivalent to 1 ns/day) and (2) for the optical reference at the level of 1×10-11at 1 day (equivalent to ~4 kHz/day). Such compact frequency references can be applied in industry, telecommunications, navigation, or as an on-board optical-frequency reference (e.g. LIDAR).
    The first part of this thesis evaluates the medium- to long-term frequency stability of high-performance, compact POP atomic clocks. It evaluates the POP atomic clock frequency sensitivity to relevant quantities: laser frequency and intensity fluctuations (light-shift (LS) effects), microwave power (microwave-power shifts), and environmental effects (barometric effects, temperature). The impact of such perturbations are quantified using (1) a sensitivity coefficient, or shift coefficient, defined as the variation of the clock frequency with respect to the perturbing physical parameter (e.g. a power variation σp), ΔVclock/Δp; and (2) the amplitude of fluctuation of the perturbing physical parameter itself at various time scales, σp(Τ). The sensitivity coefficients of the LS effect and the microwave-power shift are minimised, contributing to the clock's long-term frequency instability below 10-14 (relative frequency fluctuation).
    A barometric effect is demonstrated in vapour-cell frequency standards. The natural fluctuation of the atmospheric pressure deforms the glass body of the vapour cell, which changes the internal gas pressure. It results in a coupling of the clock frequency with the atmospheric pressure. The phenomenon is characterised experimentally and theoretically, and the contribution of the barometric effect is reduced below 10-14. By minimising the barometric effect, the microwave-power sensitivity, and the LS effect, a POP clock frequency stability of 1×10-14 (relative frequency fluctuation) at 104 seconds of integration time is demonstrated.
    More fundamental studies are carried out on the origin of the microwave-power shift in our POP clock prototype. The impact of the field inhomogeneity (light field and microwave fields) on the Ramsey signal and the clock frequency is studied numerically. Based on the simulated microwave-field amplitude distribution in the clock vapour cell, the measured Ramsey signal and its properties (contrast, the full width at half maximum (FWHM)) is reproduced by simulations.
    The validation of the additive manufacturing (3D printing) for the fabrication of the complex microwave cavities is demonstrated. The POP clock setup and its possibilities (due to pulsed interrogation) is used to evaluate the homogeneity and the distribution of the microwave field of the 3D-printed microwave cavity. Equivalent microwave-field distribution between the additive manufacturing cavity and the conventional-manufacturing cavity is demonstrated. Short-term frequency stability at the level of the state-of-the-art is presented.
    The studies on microwave atomic clocks presented in this thesis constitute important steps towards a better understanding of double-resonance atomic clocks. The identification of the main source of long-term frequency instability and its reduction to below a relative frequency instability of 10-14 allows for our atomic clock prototype to be compared with state-of-the-art, compact, high-performance atomic clock. Moreover, this level of frequency instability allows for new studies on the physical phenomena to which the atomic clock is less sensitive to be conducted. The reported clock frequency stability with the additive manufacturing technology is an important step towards the commercialisation of high-performance double-resonance Rb atomic clocks.
    The optical-frequency references studied in this thesis used an Rb vapour cell for the frequency stabilisation of lasers at 780 nm, 1560 nm and 1572 nm. A 1560 nm master laser was frequency stabilised to a Rb optical transition at 780 nm using frequency doubling. An optical-frequency comb generator was used to fill the gap of 12 nm between 1572 nm and the laser at 1560 nm. The laser system was designed to be an on-board frequency reference at 1572 nm for spaceborne CO2 LIDAR systems or optical pumping for Rb cell atomic clocks. The demonstrated frequency stability of the 1572 nm laser at 1572 nm is below 3×10-11 (equivalent to 5.8 kHz at 1572 nm) at all time scales reaching 4×10-12 (equivalent to 760 Hz at 1572 nm) in the long-term at the state-of-the-art level. In addition, the reproducibility and repeatability of the frequency stabilisation scheme of the master laser were evaluated. The degradation of the frequency noise and the relative intensity noise through the non-linear doubling process were also evaluated. The characterisation of the optical-frequency references identifies the basic elements for future evaluations of applications of optical pumping in atomic clocks or satellite LIDAR on-board frequency references.
    1 This work was conducted at the Laboratoire Temps-Fréquence at the University of Neuchâtel. This work was supported by the Swiss National Science Foundation (FNS): “Precision double-resonance spectroscopy and metrology with stabilised lasers and atomic vapours: applications for atomic clocks and magnetometers” no. 156621 (2015–2019).
  • Publication
    Accès libre
    Rubidium Vapour-cell Frequency Standards : Metrology of Optical and Microwave Frequency References
    (Neuchâtel, 2019)
    Cette thèse porte sur le développement, l'étude et l'optimisation de références de fréquence compactes de hautes performances à base de cellules de vapeur de rubidium (Rb)1. Plus particulièrement, deux références de fréquence à cellules à vapeur de Rb sont étudiées : une référence de fréquence optique à 1,5 μm et une horloge atomique à double résonance à pompage optique pulsé (POP). L'utilisation de cellules à vapeur permet de réaliser des références de fréquence compactes (i.e. dans un volume de quelques litres) ayant une stabilité de fréquence relative (1) pour une horloge atomique micro-onde au niveau de 1×10-14 à 1 jour (équivalent à 1 ns/jour) et (2) pour la référence optique au niveau de 1×10-11 à 1 jour (équivalent à environ 4 kHz/jour). Ces références de fréquence compactes peuvent être utilisées dans l'industrie, les télécommunications, la navigation ou comme référence de fréquence optique embarquée (par ex. LIDAR). La première partie de cette thèse évalue la stabilité de fréquence à moyen et long terme d'une horloge atomique POP compacte de haute performance. Cela consiste à évaluer la sensibilité de la fréquence de l'horloge aux grandeurs pertinentes : fluctuations de fréquence et d'intensité du laser (effets de décalage de fréquence due à lumière (LS)), puissance micro-onde (décalages de fréquence due à la puissance micro-ondes), et effets environnementaux (effets barométriques, température). L'impact de telles perturbations est quantifié en utilisant (1) un coefficient de sensibilité, ou coefficient de décalage de fréquence, défini comme la variation de la fréquence d'horloge par rapport au paramètre physique perturbateur (par exemple une variation de puissance σp), ΔVclock/Δp; et (2) l'amplitude des fluctuations du paramètre physique perturbateur lui-même évalué à différentes échelles de temps, σpΤ). Les coefficients de sensibilité de l'effet LS et du décalage due à la puissance micro-onde sont minimisés, contribuant à l'instabilité de fréquence de l'horloge en dessous de 10-14 dans le long terme (fluctuation de fréquence relative). Un effet barométrique est démontré dans les étalons de fréquence à cellule de vapeur. La fluctuation naturelle de la pression atmosphérique déforme la cellule en verre, ce qui modifie la pression interne du gaz. Il en résulte un couplage de la fréquence de l'horloge avec la pression atmosphérique. Le phénomène est caractérisé expérimentalement et théoriquement, et la contribution de l'effet barométrique est réduite en dessous de 10-14. En minimisant l'effet barométrique, la sensibilité à la puissance micro-ondes et l'effet LS, on démontre une stabilité de fréquence de notre prototype d'horloge POP de 1×10-14 (fluctuation de fréquence relative) à 104 secondes de temps d'intégration. Des études plus fondamentales sont menées sur l'origine du décalage de fréquence dû à la puissance micro-onde pour notre prototype d'horloge POP. L'impact de l'inhomogénéité du champ (champ lumineux et champ micro-ondes) sur le signal de Ramsey et la fréquence de l'horloge est étudié numériquement. Sur la base de la distribution d'amplitude du champ micro-onde simulée dans la cellule de l'horloge, le signal de Ramsey mesuré et ses propriétés (contraste, largeur totale à mi-hauteur (FWHM)) sont reproduits par simulations. La validation de la production additive (impression 3D) pour la fabrication des cavités micro-ondes complexes est démontrée. L'horloge POP et ses possibilités (grâce à l'interrogation pulsée) est utilisée pour évaluer l'homogénéité et la distribution du champ micro-onde de la cavité micro-onde. On démontre que la distribution du champ micro-onde de la cavité fabriqué par impression 3D est équivalente au champ micro-onde d'une cavité de fabrication conventionnelle. De plus, on présente une stabilité de fréquence horloge au niveau de l'état de l'art obtenu avec une horloge ayant une cavité micro-onde fabriquée par impression 3D. Les études présentées dans cette thèse sont des étapes importantes vers une meilleure compréhension des horloges atomiques à double résonance. L'identification de la principale source d'instabilité de fréquence à long terme (l'effet barométrique) et sa réduction en dessous d'une instabilité de fréquence relative de 10-14 permet de comparer notre prototype d'horloge atomique avec l'état de l'art des horloges atomiques compactes et à haute performance. De plus, ce niveau d'instabilité de fréquence permet de mener de nouvelles études sur les phénomènes physiques auxquels l'horloge atomique est moins sensible. La stabilité de fréquence d'horloge obtenue avec l'horloge possédant une cavité fabriquée par impression 3D est une étape importante vers la commercialisation d'horloges atomiques Rb à double résonance. La deuxième partie de cette thèse porte sur les références de fréquence optique utilisent une cellule à vapeur de Rb pour la stabilisation en fréquence des lasers à 780 nm, 1560 nm et 1572 nm. Un laser maître de 1560 nm a été stabilisé en fréquence sur une cellule de vapeur de Rb à 780 nm par doublement de fréquence. Un générateur de peigne de fréquence optique a été utilisé pour combler l'espace de 12 nm entre 1572 nm et le laser à 1560 nm. Le système laser a été conçu pour être une référence de fréquence embarquée à 1572 nm pour un système LIDAR spatial ou pour faire du pompage optique pour les horloges atomiques à cellules Rb. La stabilité de fréquence démontrée du laser à 1572 nm est inférieure à 3×10-11 (équivalent à 5,8 kHz à 1572 nm) à toutes les échelles de temps et atteint 4×10-12 (équivalent à 760 Hz à 1572 nm) à long terme. En outre, la reproductibilité et la répétabilité du schéma de stabilisation de fréquence du laser maître ont été évaluées. La dégradation du bruit de fréquence et du bruit d'intensité par le processus de doublage de fréquence a également été évaluée. La caractérisation des références de fréquence optique permet d'identifier les futurs axes de recherche pour l'application de ces références optiques pour le pompage optique dans les horloges atomiques ou comme références de fréquence embarqué (LIDAR spatial). 1 Ces travaux ont été menés au Laboratoire Temps-Fréquence de l'Université de Neuchâtel. Ces travaux ont été soutenus par le Fonds national suisse de la recherche scientifique (FNS) : "Precision double-resonance spectroscopy and metrology with stabilised lasers and atomic vapours : applications for atomic clocks and magnetometers" n°. 156621 (2015-2019).
  • Publication
    Métadonnées seulement
    Barometric Effect in Vapor-Cell Atomic Clocks
    Vapor-cell atomic clocks are compact and high-performance frequency references employed in various appli-cations ranging from telecommunication to global positioningsystems. Environmental sensitivities are often the main sourcesof long-term instabilities of the clock frequency. Among thesesensitivities, the environmental pressure shift describes the clockfrequency change with respect to the environmental pressurevariations. We report here on our theoretical and experimentalanalysis of the environmental pressure shift on rubidium atomicfrequency standards (RAFSs) operated under open atmosphere.By using an unsealed high-performance laser-pumped rubidiumstandard, we demonstrate that the deformation of the vapor-cell volume induced by the environmental pressure changes(i.e., barometric effect) is the dominant environmental pressureshift in a standard laboratory environment. An experimentalbarometric coefficient of 8.2×10−14/hPa is derived, in goodagreement with theory and with previously reported measure-ments of frequency shifts of RAFS operated when transiting tovacuum.
  • Publication
    Métadonnées seulement
    Rb-stabilized laser at 1572 nm for CO2 monitoring
    We have developed a compact rubidium-stabilized laser system to serve as optical frequency reference in the 1.55-m wavelength region, in particular for CO2 monitoring at 1572 nm. The light of a fiber-pigtailed distributed feedback (DFB) laser emitting at 1560 nm is frequency-doubled and locked to a sub-Doppler rubidium transition at 780 nm using a 2-cm long vapor glass cell. Part of the DFB laser light is modulated with an electro-optical modula-tor enclosed in a Fabry-Perot cavity, generating an optical frequency comb with spectral cover-age extending from 1540 nm to 1580 nm. A second slave DFB laser emitting at 1572 nm and offset-locked to one line of the frequency comb shows a relative frequency stability of 1·10-11at 1 s averaging time and <4·10-12 from 1 hour up to 3 days.
  • Publication
    Accès libre
    Long-Term Stability Analysis Towards <10-14 Level for a Highly Compact POP Rb Cell Atomic Clock
    Long-term frequency instabilities in vapor-cell clocks mainly arise from fluctuations of the experimental and environmental parameters that are converted to clock frequency fluctuations via various physical processes. Here, we discuss the frequency sensitivities and the resulting stability limitations at one-day timescale for a rubidium vapor-cell clock based on a compact magnetron-type cavity operated in air (no vacuum environment). Under ambient laboratory conditions, the external atmospheric pressure fluctuations may dominantly limit the clock stability via the barometric effect. We establish a complete longterm instability budget for our clock operated under stable pressure conditions. Where possible, the fluctuations of experimental parameters are measured via the atomic response. The measured clock instability of <2 × 10-14 at one day is limited by the intensity light-shift effect, which could further be reduced by active stabilization of the laser intensity or stronger optical pumping. The analyses reported here show the way toward simple, compact, and low-power vapor-cell atomic clocks with excellent long-term stabilities ≤10-14 at one day when operated in ambient laboratory conditions.
  • Publication
    Accès libre
    Rb-stabilized laser at 1572 nm for CO2 monitoring
    We have developed a compact rubidium-stabilized laser system to serve as optical frequency reference in the 1.55-μm wavelength region, in particular for CO2 monitoring at 1572 nm. The light of a fiber-pigtailed distributed feedback (DFB) laser emitting at 1560 nm is frequency-doubled and locked to a sub-Doppler rubidium transition at 780 nm using a 2-cm long vapor glass cell. Part of the DFB laser light is modulated with an electro-optical modulator enclosed in a Fabry-Perot cavity, generating an optical frequency comb with spectral coverage extending from 1540 nm to 1580 nm. A second slave DFB laser emitting at 1572 nm and offset-locked to one line of the frequency comb shows a relative frequency stability of 1.10-11 at 1 s averaging time and <4.10-12 from 1 hour up to 3 days.
  • Publication
    Accès libre
    Rb vapor-cell clock demonstration with a frequency-doubled telecom laser
    We employ a recently developed laser system, based on a low-noise telecom laser emitting around 1.56 μm, to evaluate its impact on the performance of an Rb vapor-cell clock in a continuous-wave double-resonance scheme. The achieved short-term clock instability below 2.5·10−13·τ−1∕2 demonstrates, for the first time, the suitability of a frequency-doubled telecom laser for this specific application. We measure and study quantitatively the impact of laser amplitude and frequency noises and of the ac Stark shift, which limit the clock frequency stability on short timescales. We also report on the detailed noise budgets and demonstrate experimentally that, under certain conditions, the short-term stability of the clock operated with the low-noise telecom laser is improved by a factor of three compared to clock operation using the direct 780-nm laser.
  • Publication
    Accès libre
    Characterization of Frequency-Doubled 1.5-μm Lasers for High-Performance Rb Clocks
    We report on the characterization of two fiber-coupled 1.5- μm diode lasers, frequency-doubled and stabilized to Rubidium (Rb) atomic resonances at 780 nm. Such laser systems are of interest in view of their implementation in Rb vaporcell atomic clocks, as an alternative to lasers emitting directly at 780 nm. The spectral properties and the instabilities of the frequency-doubled lasers are evaluated against a state-of-the-art compact Rb-stabilized laser system based on a distributed-feedback laser diode emitting at 780 nm. All three lasers are frequency stabilized using essentially identical Doppler-free spectroscopy schemes. The long-term optical power fluctuations at 780 nm are measured, simultaneously with the frequency instability measurements done by three beat notes established between the three lasers. One of the frequency-doubled laser systems shows at 780 nm excellent spectral properties. Its relative intensity noise <10−12 Hz−1 is one order of magnitude lower than the reference 780-nm laser, and the frequency noise <106 Hz2/Hz is limited by the laser current source. Its optical frequency instability is <4 × 10−12 at τ = 1 s, limited by the reference laser, and better than 1 × 10−11 at all timescales up to one day. We also evaluate the impact of the laser spectral properties and instabilities on the Rb atomic clock performance, in particular taking into account the light-shift effect. Optical power instabilities on long-term timescales, largely originating from the frequency-doubling stage, are identified as a limitation in view of high-performance Rb atomic clocks.
  • Publication
    Accès libre
    Impact of microwave-field inhomogeneity in an alkali vapour cell using Ramsey double-resonance spectroscopy
    We numerically and experimentally evaluate the impact of the inhomogeneity of the microwave field in the cavity used to perform double-resonance (DR) Ramsey spectroscopy in a buffer gas alkali vapour cell. The Ramsey spectrum is numerically simulated using a simple theoretical model and taking into account the field distribution in a magnetron-type microwave resonator. An experimental evaluation is performed using a DR pulsed optically pumped (POP) atomic clock. It is shown that the sensitivity to the micro-wave power of the DR POP clock can be reproduced from the combination of two inhomogeneities across the vapour cell: microwave field inhomogeneity and atomic ground-state resonance frequency inhomogeneity. Finally, we present the existence of an optimum operation point for which the microwave power sensitivity of our DR POP clock is reduced by two orders of magnitude. It leads into a long-term frequency stability of 1 × 10-14.