Voici les éléments 1 - 3 sur 3
  • Publication
    Métadonnées seulement
    Using DNA-barcoding for sorting out protist species complexes: A case study of the Nebela tincta-collaris-bohemica group (Amoebozoa; Arcellinida, Hyalospheniidae)
    (2013) ;
    Gomaa, Fatma
    ;
    ;
    Heger, Thierry J.
    ;
    Species identification by means of morphology is often problematic in protists. Nebela tincta-collaris-bohemica (Arcellinida) is a species complex of small to medium-sized (ca. 100 mu m) testate amoebae common in peat bogs and forest soils. The taxonomic validity of characters used to define species within this group is debated and causes confusion in studies of biogeography, and applications in palaeoecology. We examined the relationship between morphological and genetic diversity within this species complex by combined analyses of light microscopy imaging and Cytochrome Oxidase Subunit 1(COI) sequences obtained from the same individual amoeba cells. Our goals were (1) to clarify the taxonomy and the phylogenetic relationships within this group, and (2) to evaluate if individual genotypes corresponded to specific morphotypes and the extent of phenotypic plasticity. We show here that small variations in test morphology that have been often overlooked by traditional taxonomy correspond to distinct haplotypes. We therefore revise the taxonomy of the group. We redefine Nebela tincta (Leidy) Kosakyan et Lara and N. collaris (Ehrenberg 1848) Kosakyan et Gomaa, change N. tincta var. rotunda Penard to N. rotunda (Penard 1890), describe three new species: N. guttata n. sp. Kosakyan et Lara, N. pechorensis n. sp. Kosakyan et Mitchell, and N. aliciae n. sp. Mitchell et Lara. (C) 2012 Elsevier GmbH. All rights reserved.
  • Publication
    Accès libre
    COI Barcoding of Nebelid Testate Amoebae (Amoebozoa: Arcellinida): Extensive Cryptic Diversity and Redefinition of the Hyalospheniidae Schultze
    (2012) ;
    Heger, Thierry J.
    ;
    Leander, Brian S.
    ;
    Todorov, Milcho
    ;
    ;
    We used Cytochrome Oxidase Subunit 1 (COI) to assess the phylogenetic relationships and taxonomy of Nebela sensu stricto and similar taxa (Nebela group, Arcellinida) in order to clarify the taxonomic validity of morphological characters. The COI data not only successfully separated all studied morphospecies but also revealed the existence of several potential cryptic species. The taxonomic implications of the results are: (1) Genus Nebela is paraphyletic and will need to be split into at least two monophyletic assemblages when taxon sampling is further expanded. (2) Genus Quadrulella, one of the few arcellinid genera building its shell from self-secreted siliceous elements, and the mixotrophic Hyalosphenia papilio branch within the Nebela group in agreement with the general morphology of their shell and the presence of an organic rim around the aperture (synapomorphy for Hyalospheniidae). We thus synonymise Hyalospheniidae and Nebelidae. Hyalospheniidae takes precedence and now includes Hyalosphenia, Quadrulella (previously in the Lesquereusiidae) and all Nebelidae with the exception of Argynnia and Physochila. Leptochlamys is Arcellinida incertae sedis. We describe a new genus Padaungiella Lara et Todorov and a new species Nebela meisterfeldi n. sp. Heger et Mitchell and revise the taxonomic position (and rank) of several taxa. These results show that the traditional morphology-based taxonomy underestimates the diversity within the Nebela group, and that phylogenetic relationships are best inferred from shell shape rather than from the material used to build the shell.
  • Publication
    Accès libre
    Using DNA-barcoding for sorting out protest species complexes:: A case study of the Nebela tincta–collaris–bohemica group (Amoebozoa; Arcellinida, Hyalospheniidae)
    ;
    Gomaa, Fatma
    ;
    ;
    Heger, Thierry J.
    ;
    Species identification by means of morphology is often problematic in protists. Nebela tincta–collaris–bohemica (Arcellinida) is a species complex of small to medium-sized (ca.100 μm) testate amoebae common in peat bogs and forest soils. The taxonomic validity of characters used to define species within this group is debated and causes confusion in studies of biogeography, and applications in palaeoecology.
    We examined the relationship between morphological and genetic diversity within this species complex by combined analyses of light microscopy imaging and Cytochrome Oxidase Subunit 1(COI) sequences obtained from the same individual amoeba cells. Our goals were (1) to clarify the taxonomy and the phylogenetic relationships within this group, and (2) to evaluate if individual genotypes corresponded to specific morphotypes and the extent of phenotypic plasticity.
    We show here that small variations in test morphology that have been often overlooked by traditional taxonomy correspond to distinct haplotypes. We therefore revise the taxonomy of the group. We redefine Nebela tincta (Leidy) Kosakyan et Lara and N. collaris (Ehrenberg 1848) Kosakyan et Gomaa, change N. tincta var. rotunda Penard to N. rotunda (Penard 1890), describe three new species: N. guttata n. sp. Kosakyan et Lara, N. pechorensis n. sp. Kosakyan et Mitchell, and N. aliciae n. sp. Mitchell et Lara.