Voici les éléments 1 - 10 sur 12
  • Publication
    Accès libre
    Earthworms, Plants, and Soils
    (New-York: John Wiley and Sons, Inc., 2021) ;
    Bullinger-Weber, G
    ;
    ;
    Turberg, Pascal
    ;
    ;
    Schlaepfer, Rodolphe
    ;
    Guenat, Claire
    The importance of engineers is increasingly recognized in soil science because of their implication in most important pedological processes. Furthermore, they contribute to ecological functions provided by soils in both natural and human‐modified environments. In this review, we focus on the role of two ecosystem engineers: (1) plants, their root system, and associated microorganisms and (2) earthworms. First, we explain why they are considered as major soil engineers, and which variables (texture, porosity, nutrient, and moisture dynamics) control their activities in space and time (hotspots and hot moments). Then, their roles in three processes of soil formation are reviewed, namely, rock and mineral weathering, soil structure (formation, stabilization, and disintegration), and bioturbation. For each of them, the involved mechanisms that occur at different spatial scales (from local to landscape) are presented. On one hand, tree uprooting plays a key role in rock weathering and soil profile bioturbation. In addition, living and dead roots also contribute to rock alteration and aggregation. On the other hand, earthworms are mainly involved in the formation of aggregates and burrows through their bioturbation activities and to a less extent in weathering processes. The long‐term effects of such mechanisms on soil heterogeneity, soil development, and pathways of pedogenesis are discussed. Finally, we show how these two main ecosystem engineers contribute to provisioning and regulating services. Through their physical activities of burrowing and soil aggregation, earthworms and plants increase plant productivity, water infiltration, and climate warming mitigation. They act as catalysts and provide, transform, and translocate organic matter and nutrients throughout the soil profile. Finally, due to inter‐ and intraspecific interactions and/or symbiosis with microorganisms (arbuscular fungi, bacteria), they enhance soil fertility, decrease parasitic action, and bioremediate some pollutants. Future research is, however, still needed for a better understanding of the relationships between adequate soil management, agricultural practices, and soil biota in a perspective of relevant maintenance and durability of ecological services.
  • Publication
    Accès libre
    Use of X-ray microcomputed tomography for characterizing earthworm-derived belowground soil aggregates
    (2020-3-21) ;
    Guenat, Claire
    ;
    Schlaepfer, Rodolphe
    ;
    Fischer, Franziska
    ;
    Luiset, Alexandre
    ;
    ;
    Turberg, Pascal
    Soil structure is closely linked to biological activities. However, identifying, describing and quantifying soil aggregates remain challenging. X-ray microcomputed tomography (X-ray μCT) provides a detailed view of the physicalstructure at a spatial resolution of a few microns. It could be a useful tool todiscriminate soil aggregates, their origin and their formation processes for a better comprehension of soil structure properties and genesis. Our study aims to (a) determine different X-ray μCT-based aggregate parameters for differentiating earthworm casts belowground (earthworm aggregates) from aggregates that are not formed by earthworms (non-earthworm aggregates), and (b) to evaluate if these parameters can also serve as specific “tomographic signatures” for the studied earthworm species. For this purpose, we set up a microcosm experiment under controlled conditions during 8 weeks, including three species of earthworms tested separately: the epigeic Lumbricus rubellus, the anecic Lumbricus terrestris and the endogeic Allolobophora chlorotica. Our results show that X-ray μCT analysis helps distinguish earthworm aggregates from non-earthworm ones using (a) the relative volume of the components within aggregates and (b) the volumetric mass of aggregates and their global volume. In particular, the volume ratio of mineral grains within the aggregates is significantly different according to earthworm species. So, X-ray μCT is a powerful and promising tool for studying the composition of earthworm casts and their formation. However, future research is needed to take into account the shapes and spatial distribution of the aggregates' components, in particular the different states of organic matter decomposition.
  • Publication
    Accès libre
    Pioneer plant Phalaris arundinacea and earthworms promote initial soil structure formation despite strong alluvial dynamics in a semi-controlled field experiment
    (2019-9-11) ; ;
    Turberg, Pascal
    ;
    Guenat, Claire
    ;
    Riaz, M.
    ;
    ;
    Luster, J.
    Soil structure formation is among the most important processes in river floodplains which are strongly influenced by alluvial dynamics. In the context of river restoration projects, a better understanding of soil structure formation in habitats adjacent to the river can help to prevent damages caused by riverbank erosion. Ecosystem engineers such as pioneer herbaceous plants and earthworms likely contribute to soil structure formation even despite less favourable environmental conditions. This study aims to assess the capacity of the herbaceous perennial and native species Phalaris arundinacea and earthworm communities to promote a stable soil structure in alluvial sediments, in particular fresh alluvial deposits, in the short term. Delimited plots were set-up in a restored floodplain adjacent to the Thur River in NE Switzerland and exposed to natural alluvial dynamics for 19 months. Four treatments were replicated in a randomised complete block design: (i) plots with Phalaris arundinacea as only vegetation, (ii) plots with all vegetation constantly removed, (iii) and (iv) the earthworm community reduced by mustard treatment, otherwise as (i) and (ii), respectively. Soil structure formation was analysed at the end of the experiment using different indicators: aggregate stability, field-saturated hydraulic conductivity and the porosity calculated from X-ray CT reconstructions of freeze cores. Phalaris arundinacea was capable of improving the porosity and aggregate stability of both alluvial sediments present at the beginning of the experiment but also of sediments freshly deposited during the observation period. The latter indicates a structuring effect within only one vegetation period. Earthworm abundance was as a whole very low, most likely due to the large proportion of sand. There was a small earthworm effect on soil structure formation, and only in combination with Phalaris.arundinacea. Our findings highlight the ability of Phalaris arundinacea in efficiently structuring sandy alluvial sediments in the short term even under strong alluvial dynamics. Phalaris arundinacea can therefore play a key role in the early stage of river restoration projects. Thus, facilitating the colonisation by such native pioneer herbaceous plants is a suitable step to improve the success of river restoration projects.
  • Publication
    Accès libre
    Topsoil structure stability in a restored floodplain: Impacts of fluctuating water levels, soil parameters and ecosystem engineers
    Ecosystem services provided by floodplains are strongly controlled by the structural stability of soils. The development of a stable structure in floodplain soils is affected by a complex and poorly understood interplay of hydrological, physico-chemical and biological processes. This paper aims at analysing relations between fluctuating groundwater levels, soil physico-chemical and biological parameters on soil structure stability in a restored floodplain.Water level fluctuations in the soil are modelled using a numerical surface-water–groundwater flow model and correlated to soil physico-chemical parameters and abundances of plants and earthworms. Causal relations andmultiple interactions between the investigated parameters are tested through structural equation modelling (SEM). Fluctuatingwater levels in the soil did not directly affect the topsoil structure stability, but indirectly through affecting plant roots and soil parameters that in turn determine topsoil structure stability. These relations remain significant for mean annual days of complete and partial (N25%)water saturation. Ecosystemfunctioning of a restored floodplainmight already be affected by the fluctuation of groundwater levels alone, and not only through complete flooding by surface water during a flood period. Surprisingly, abundances of earthworms did not showany relation to other variables in the SEM. These findings emphasise that earthworms have efficiently adapted to periodic stress and harsh environmental conditions. Variability of the topsoil structure stability is thus stronger driven by the influence of fluctuatingwater levels on plants than by the abundance of earthworms. This knowledge about the functional network of soil engineering organisms, soil parameters and fluctuating water levels and how they affect soil structural stability is of fundamental importance to define management strategies of near-natural or restored floodplains in the future
  • Publication
    Accès libre
    Coupling X-ray computed tomography and freeze-coring for the analysis of fine-grained low-cohesive soils
    (2017-12-15)
    Liernur, Adrien
    ;
    ;
    Turberg, Pascal
    ;
    Guenat, Claire
    ;
    ;
    This paper presents the coupling of freeze-core sampling with X-ray CT scanning for the analysis of the soil structure of fine-grained, low-cohesive soils. We used a medical scanner to image the 3D soil structure of the frozen soil cores, providing X-ray CT data at a millimetric resolution over freeze-cores that are up to 62.5 cm long and 25 cm wide. The obtained data and the changes in gray level values could be successfully used to identify and characterize different soil units with distinctly different physical properties. Traditional measurements of soil bulk density, carbon and particle size analyses were conducted within each of the identified soil units. These observations were used to develop a 3D model of soil bulk density and organic matter distribution for five freeze-cores obtained at a restored floodplain in Switzerland. The millimetric X-ray CT scanning was applied to detect the impact of freeze-coring on the soil structural integrity. This allows identifying undisturbed zones, a critical precondition for any subsequent assessment of soil structure. The proposed coupling is thought to be applicable to a wide range of other low-cohesive soil types and has a large potential for applications in hydrogeology, biology or soil science.
  • Publication
    Accès libre
    Earthworms as Ecosystem Engineers: A Review
    (New York: NOVA Science Publishers, 2017) ; ; ;
    Turberg, Pascal
    ;
    Schlaepfer, Rodolphe
    ;
    Guenat, Claire
  • Publication
    Accès libre
    Subordinate plant species moderate drought effects on earthworms communities in grasslands
    (2016-2-13)
    Mariotte, Pierre
    ;
    ;
    Eisenhauer, Nico
    ;
    Guenat, Claire
    ;
    Buttler, Alexandre
    Loss of plant diversity resulting from forecasted drought events is likely to alter soil functioning and affect earthworm communities. Plant-soil interactions are expected to play an important role in mediating climate change effects on soil decomposers. In this study, we test above-belowground linkages after drought by focusing on the effects of subordinate plant species on earthworm communities. Using a combination of subordinate species removal and experimental drought, we show that subordinate species, when present, increased in biomass after drought and induced an increase in total earthworm biomass. These effects were thought to be associated with the maintenance of food quantity and quality (e.g. nitrogen-rich litter) in relation to subordinate species. In support to this hypothesis, we found a positive correlation between the abundance of juvenile earthworms and plant community biomass hence litter quantity, and between the total biomass of earthworms and the abundance of subordinate species. Anecic earthworms were the most benefited by the presence of subordinate species under drought, especially Lumbricus terrestris, which was significantly correlated to the biomass of the nitrogen-rich subordinate species Veronica chamaedrys. Results of a multiple factor analysis (MFA) also highlighted positive associations between earthworm and subordinate species, independently of the drought treatment. Our study highlights how climate change, in this case reduced summer rainfall, can influence plant functional groups, with cascading effects on earthworms. It is therefore crucial, considering forecasted climate change, to understand these processes in order to better predict ecosystem responses and to adapt grassland management.
  • Publication
    Accès libre
    Carbon storage and soil organic matter stabilisation in near-natural, restored and embanked Swiss floodplains
    (2014-2-4) ; ;
    Thébault, Aurélie
    ;
    Schlaepfer, R
    ;
    Guenat, Claire
    Over recent decades, the number of floodplain restoration projects has increasedworldwide. In Switzerland, several projects have been implemented tomaintain or recreate ecological functions of floodplains. Despite this, little is known about the potential of floodplain soils to release and/or accumulate carbon. In alluvial soils, carbon storage is strongly influenced by fluvial dynamics, and therefore a better understanding of carbon fluxes and stocks in such settings is clearly needed.To evaluate the impact of river restoration on carbon storage in alluvial soils, we aimed to quantify and explain carbon storage and soil organic matter (SOM) stabilisation in the uppermost soil humic layer. Three floodplains were investigated showing each of themdifferent levels of human disturbance: a near-natural section along the Rhine River, and both restored and embanked sections along the Thur River and Emme River. Carbon storagewas determined by total organic carbon (TOC) stocks. SOM stabilisation was evaluated by considering the TOC content in different granulometric fractions (1000–2000 μm, 500–1000 μm, and 250–500 μm) and the macroaggregate formation, i.e. the abundance of water-stable aggregates (WSA) and the mean weight diameter of macro-aggregates (MWD). Our results showthat the carbon storage and SOMstabilisation parameterswere all related to soil properties such as clay, silt and total iron contents of the upper humic layer. Within each floodplain, carbon storage and SOM stabilisation parameters differed according to soil profile groups, thus reflecting a soil gradient evolution from bare alluvium soils tomore stabilised soils and a hydric functioning (soils with hydromorphic features). In addition, river restoration showed various impacts on carbon storage and SOMstabilisation parameters depending on the floodplains, with a significant difference between embanked and restored sections for the Emme floodplain and no difference for the Thur floodplain.
  • Publication
    Accès libre
    Influence of some physicochemical and biological parameters on soil structure formation in alluvial soils
    (2007)
    Bullinger-Weber, G.
    ;
    ; ;
    Guenat, Claire
    This study examines the role of abiotic (texture, calcium carbonates or iron) and biotic parameters (earthworm and enchytraeid activities) on the initial phases of soil aggregation. Our research focused on humus forms in alluvial soils, which are considered as young and heterogeneous environments. We hypothesized that the soil structure formation is determined by both the nature of the recent alluvial deposits and the soil fauna. For this purpose, six sites were chosen throughout two types of softwood forests (willow and alder forest) representing two stages of vegetation succession. Evidence of soil texture influence on aggregate stability was observed. A dominance of a coarse sand fraction caused a quick colonization of enchytraeids and epigeic earthworms while a silty texture favoured the presence of anecic earthworms, thus increasing the aggregate stabilisation. Iron forms, acting as cementing agents, were observed in the coarse silt, while calcium carbonates were equally distributed among the textural fractions. Active calcium carbonate fraction, binding organic matter with mineral components, was not found in the coarse sand fraction. In conclusion, the tree age cannot alone be used as an indicator of the humus form evolution but biological and physicochemical parameters also influence the initial steps of soil structuration.
  • Publication
    Accès libre
    Log decay of Picea abies in the Swiss Jura Mountains of central Europe
    (2007)
    Bütler, Rita
    ;
    Patty, Lita
    ;
    ;
    Guenat, Claire
    ;
    Schlaepfer, Rodolphe
    The key importance of coarse woody debris (CWD) for biodiversity is well acknowledged. However, its role in terrestrial nutrient and carbon cycles is less studied, in particular in central Europe. We analysed the decay process of spruce Picea abies (L.) Karst., the most common tree species in Switzerland. The aims were: (i) to examine the usefulness of ultrasonic wave measurements for characterising of decay processes; (ii) to assess changes in physical and chemical variables of CWD during the decay process in relation to site-specific humus forms. We analysed 25 logs, five per decomposition class within a five-class system, for their density, moisture, C, N and P contents, lignin and cellulose. We also applied ultrasonic measurements to the radial axis of decaying logs using the Sylvatest-Duo® tool. In addition, we described eight soil profiles below the sampled logs and analysed the soil samples for total C, N and P and water pH. All the soils sampled were classified as humiferous Brunisol (eutric Cambisol) with various humus types.
    The propagation speed of ultrasonic waves was found to be directly proportional to the average tree density and inversely proportional to C content. These preliminary results point out the potential usefulness of this technique for further studies of wood decay. Wood density was found to decrease during wood decay (434–308 mg g−1), whereas moisture increased (94–258%). Carbon and lignin concentrations remained stable, while N and P contents both increased between classes 3 and 5 (N: 0.41–1.26 mg g−1 and P: 0.01–0.06 mg g−1).
    These general decay patterns are in accordance with previous studies of other tree species and of P. abies in other geographic regions. However, we did find some site-specific patterns, e.g. N and P were lower and wood density declined less than in other studies. Climatic factors at the study site slow down biological activity and they also seem to explain the morphology of the humus forms and their variations. We found no concordance between the humus morphology and the wood-decay state. We recommend performing long-term experiments in Central European forests to investigate the different factors that may influence CWD decomposition, such as edaphic and climatic conditions, in a controlled way.