Options
Graf, Monique
Nom
Graf, Monique
Affiliation principale
Fonction
Ancien.ne collaborateur.trice
Identifiants
Résultat de la recherche
Voici les éléments 1 - 7 sur 7
- PublicationAccès libreThe simplicial generalized beta distribution. R-package and applications(2019-6-8)A generalization of the Dirichlet and the scaled Dirichlet distributions is given by the simplicial generalized Beta, SGB (Graf, 2017). In the Dirichlet and the scaled Dirichlet distributions, the shape parameters are modeled with auxiliary variables (Maier, 2015, R-package DirichletReg) and Monti et al. (2011), respectively. On the other hand, in the ordinary logistic normal regression, it is the scale composition that is made dependent on auxiliary variables. The modeling of scales seems easier to interpret than the modeling of shapes. Thus in the SGB regression: - The scale compositions are modeled in the same way as for the logistic normal regression, i.e. each auxiliary variable generates D parameters, where D is the number of parts. - The D Dirichlet shape parameters, one for each part in the compositions, are estimated as well. - An additional overall shape parameter is introduced in the SGB that proves to have important properties in relation with non essential zeros. - Use of survey weights is an option. - Imputation of missing parts is possible. An application to the United Kingdom Time Use Survey (Gershuny and Sullivan, 2017) shows the power of the method. The R-package SGB (Graf, 2019) makes the method accessible to users. See the package vignette for more information and examples.
- PublicationMétadonnées seulementUne interprétation de la pseudo-vraisemblance(2018-10-26)Considérons un modèle statistique de super-population dans lequel une variable d'intérêt connue sur une population de taille $N$ est considérée comme un ensemble de $N$ réalisations aléatoires indépendantes du modèle. La log-vraisemblance au niveau de la population s'écrit alors comme une somme. Si on ne dispose que d'un échantillon, tiré selon un plan de sondage à probabilités inégales, la log-pseudo-vraisemblance est l'estimateur de Horvitz-Thompson de la log-vraisemblance de la population. En général, les poids sont multipliés par un facteur de normalisation, de telle sorte qu'ils somment à la taille de l'échantillon. Dans le cas d'un seul niveau, cela ne change pas la valeur des paramètres estimés. Le problème du choix des facteur de normalisation dans les plans en grappes a été abondamment traité dans la littérature, sans aboutir à des directives claires. On propose de calculer ces facteurs de telle sorte que la pseudo-vraisemblance soit une vraisemblance au sens propre.
- PublicationAccès libreCalage serré des poids d’enquête(2014-11-19)Le calage des poids de sondage se réfère à la recherche de corrections multiplicatives des poids, de telle sorte que les totaux extrapolés des variables de calage coïncident avec les totaux de population correspondants, supposés connus. Il est souvent souhaitable d'imposer des limites sur la variabilité des corrections de poids, mais il peut arriver que le calage devienne alors impossible. En effet, en général spécialement si l'on prévoit de faire des estimations, non seulement pour la population entière ou les catégories utilisées pour le calage, mais aussi pour des domaines coupant ces catégories. Les propriétés d'optimalité des poids calés ne fournissant aucune garantie dans ce cas, il est intéressant de limiter au maximum la variabilité des corrections de poids. Dans la pratique, le problème du calage est résolu en minimisant d'une fonction de perte convexe dépendant de limites définies a priori sur la correction des poids. On décrit ici une méthode pour trouver les limites les plus serrées possible pour le calage des poids de sondage, telles que le problème soit toujours réalisable. Malgré la taille du problème, la mise en œuvre dans R à l'aide de matrices creuses s'est avérée facile à gérer pour les enquêtes en taille réelle, d'au moins plusieurs milliers d'unités. On donne un exemple réel et un exemple de simulation qui prouvent la faisabilité de la méthode.
- PublicationMétadonnées seulementCompositional analysis of a mixture distribution with application to categorical modelling(2013-12-10)
; Many probability distributions can be represented as compound distributions. Consider some parameter vector as random. The compound distribution is the expected distribution of the variable of interest given the random parameters. Our idea is to define a partition of the domain of definition of the random parameters, so that we can represent the expected density of the variable of interest as a finite mixture of conditional densities. We then model the probabilities of the conditional densities using information on population categories, thus modifying the original overall model. Our examples use the European Union Statistics on Income and Living Conditions (EU-SILC) data. For each country, we estimate a mixture model derived from the GB2 in which the probability weights are predicted with household categories. Comparisons across countries are processed using compositional data analysis tools. Our method also offers an indirect estimation of inequality and poverty indices. - PublicationMétadonnées seulement
- PublicationMétadonnées seulement
- PublicationMétadonnées seulement