Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Response of Sphagnum Testate Amoebae to Drainage, Subsequent Re-wetting and Associated Changes in the Moss Carpet: Results from a Three Year Mesocosm Experiment
    Sphagnum peatlands represent a globally significant pool and sink of carbon but these functions are threatened by ongoing climate change. Testate amoebae are useful bioindicators of hydrological changes, but little experimental work has been done on the impact of water table changes on communities.
    Using a mesocosm experimental setting that was previously used to assess the impact of drought disturbance on communities and ecosystem processes with three contrasted water table positions: wet (–4 cm), intermediate (–15 cm) and dry (–25 cm), we studied the capacity of testate amoeba communities to recover when the water table was kept at –10 cm for all plots. The overall experiment lasted three years. We assessed the taxonomic and functional trait responses of testate amoeba communities. The selected traits were hypothesised to be correlated to moisture content (response traits: shell size, aperture position) or trophic role (effect traits: mixotrophy, aperture size controlling prey range).
    During the disturbance phase, the mixotrophic species Hyalosphenia papilio dominated the wet and intermediate plots, while the community shifted to a dominance of “dry indicators” (Corythion dubium, Nebela tincta, Cryptodifflugia oviformis) and corresponding traits (loss of mixotrophy, and dominance of smaller taxa with ventral or ventral-central aperture) in dry plots. During the recovery phase we observed two contrasted trends in the previously wet and intermediate plots: communities remained similar where the Sphagnum carpet remained intact but species and traits indicators of drier conditions increased in plots where it had degraded. In the former dry plots, indicators and traits of wet conditions increased by the end of the experiment.
    This is one of the first experiment simulating a disturbance and subsequent recovery in ex-situ mesocosms of Sphagnum peatland focusing on the response of testate amoebae community structure as well as functional traits to water table manipulation. The results generally confirmed that testate amoebae respond within a few months to hydrological changes and thus represent useful bioindicators for assessing current and past hydrological changes in Sphagnum peatlands.
  • Publication
    Accès libre
    Impact of two hot and dry summers on the community structure and functional diversity of testate amoebae in an artificial bog, illustrating their use as bioindicators of peatland health
    ;
    Christinat, K
    ;
    d’Inverno, Mirko
    ;
    Ongoing climate warming threatens the survival of bogs at the warm/dry limit of their distribution (e.g. in central Europe), and jeopardises the restoration of damaged bogs even more. Because vegetation changes can be slow, early indicators of hydrological change such as testate amoebae are useful. We used testate amoeba community structure and community weighted mean of functional traits to monitor the impact of two very hot and dry summers on a small (around 100 m2) artificial peatland constructed in the botanic garden of Neuchâtel, Switzerland. We collected analogous samples in a naturally regenerating cutover peatland at 1000 m a.s.l. in the Jura Mountains as a reference. The comparison of living and dead assemblages in the botanic garden showed an increased representation of smaller testate amoeba taxa (Corythion dubium, small Euglypha sp.) with a small pseudostome (indicative of dry conditions) and a loss of mixotrophy in 2015, followed by a weaker further shift in 2016. Nevertheless, the testate amoeba community structure in 2016 still indicated a dry Sphagnum bog. Testate amoeba analysis allows rapid assessment of peatland health and/or restoration success. The comparison of living and dead assemblages makes it possible to observe changes within a season in a single sampling campaign.