Voici les éléments 1 - 10 sur 22
  • Publication
    Accès libre
    Carbonate binding to copper(II) in solution: mixed-ligand complex formation and its application to the isolation and separation of the three isomers of [Cu(bpp)(H2O)][ClO4]2 [bpp = 2,6-bis(pyrrolidin-2-yl)pyridine]
    (2002)
    Bernauer, Klaus
    ;
    Godefroy, Isabelle
    ;
    ;
    Guicher, Nathalie
    ;
    ;
    The binding of the carbonate anion to [Cu(meso-bpp)(H2O)]2+ and rac-[Cu(bpp)(H2O)]2+ [bpp = 2,6-bis(pyrrolidin-2-yl)pyridine] in aqueous solution has been investigated. Formation constants of the carbonato complexes [Cu(meso-bpp)(CO3)] and rac-[Cu(bpp)(CO3)] (1.02 × 103 M–1 and 1.77 × 103 M–1, respectively, µ= 0.70 M) have been calculated from spectrophotometric measurements. The formation of these Cu2+ complexes can also be used for an improved synthesis and an easy isolation of the three diastereoisomers of bpp. The mixture of [Cu(meso-bpp)(H2O)]2+ and rac-[Cu(bpp)(H2O)]2+ is separated by elution from SP Sephadex C-25, either as hydroxo or carbonato derivatives. rac-[Cu(bpp)(H2O)]2+ is then resolved into the enantiomers [Cu(S,S-bpp)(H2O)]2+ and [Cu(R,R-bpp)(H2O)]2+, again on SP Sephadex C-25, by means of L-(+)-tartrate as chiral eluent. The three stereoisomers, meso-bpp, (S,S)-bpp and (R,R)-bpp are liberated from the corresponding copper(II) complexes by ligand displacement using trans-1,2-diaminocyclohexane-N,N,N’,N’-tetraacetic acid (H4cdta). The structure of the meso isomer was solved by a single crystal X-ray analysis using the perchlorate salt [meso-bppH2][ClO4]2•2H2O.
  • Publication
    Accès libre
    Dinuclear iron, ruthenium and cobalt complexes containing 1,4-dimethyl-1,4,7-triazacyclononane ligands as well as carboxylato and oxo or hydroxo bridges
    (2006)
    Romakh, Vladimir B.
    ;
    ;
    Labat, Gael
    ;
    ;
    Shul’pin, Georgiy B.
    ;
    The reaction of 1,4-dimethyl-1,4,7-triazacyclononane (L–Me2) with FeSO4 • 7H2O in aqueous ethanol gives, in the presence of sodium carboxylates, hydrogen peroxide, sodium hydroxide and KPF6, the dinuclear Fe(III)–Fe(III) complex cations [(L–Me2)2Fe2(O)(OOCR) 2]2+ (R = H: 1, R = CH3: 2, R = C6H5: 3), which crystallise as the hexafluorophosphate salts. The corresponding reaction with RuCl3nH2O does not work, however, the analogous Ru(III)–Ru(III) complex [(L–Me2)2Ru2 (O)(OOCCH3)2]2+ (5) can be synthesised by reacting Ru(dmso)4Cl2 with L–Me2, HCl and air in refluxing ethanol, followed by addition of sodium acetate, the mononuclear intermediate (L–Me2)RuCl3 • H2O (4) being also isolated and characterised. The reaction of L–Me2, sodium acetate, hydrogen peroxide and triethylamine with CoCl2 • 6H2O in acetonitrile yields, however, the hydroxo-bridged Co(III)–Co(III) complex [(L–Me2)2Co2 (OH)(OOCCH3)2]3+ (6). The molecular structures of 2, 5 and 6, solved by single-crystal X-ray structure analyses of the hexafluorophosphate salts, reveal for the orange crystals of [2][PF6]2 a Fe–Fe distance of 3.104(1) Å, for the purple crystals of [5][PF6]2 a Ru–Ru distance of 3.230(1) Å, and for the violet crystals of [6][PF6]3 • (CH3)2CO a Co–Co distance of 3.358(1) Å. All six complexes show catalytic activity for the oxidation of isopropanol with hydrogen peroxide in water to give acetone in the presence of ascorbic acid as co-catalyst.
  • Publication
    Accès libre
    Framework Fluxionality of Organometallic Oxides : Synthesis, Crystal Structure, EXAFS, and DFT Studies on [{Ru(η6-arene)}4Mo4O16] Complexes
    (2003)
    Laurencin, Danielle
    ;
    Fidalgo, Eva Garcia
    ;
    Villanneau, Richard
    ;
    Villain, Françoise
    ;
    Herson, Patrick
    ;
    Pacifico, Jessica
    ;
    ;
    Bénard, Marc
    ;
    Rohmer, Marie-Madeleine
    ;
    ;
    Proust, Anna
    Reactions of the molybdates Na2MoO4•2 H2O and (nBu4N)2[Mo2O7] with [{Ru(arene)Cl2}2] (arene=C6H5CH3, 1,3,5-C6H3(CH3)3, 1,2,4,5-C6H2(CH3)4) in water or organic solvents led to formation of the triple-cubane organometallic oxides [{Ru(η6-arene)}4Mo4O16], whose crystal and molecular structures were determined. Refluxing triple cubane [{Ru(η6-C6H5CH3)}4Mo4O16] in methanol caused partial isomerization to the windmill form. The two isomers of [{Ru(η6-C6H5CH3)}4Mo4O16] were characterized by Raman and Mo K-edge X-ray absorption spectroscopy (XAS), both in the solid-state and in solution. This triple-cubane isomer was also used as a spectroscopic model to account for isomerization of the p-cymene windmill [{Ru(η6-1,4-CH3C6H4CH(CH3)2)}4Mo4O16] in solution. Using both Raman and XAS techniques, we were then able to determine the ratio between the windmill and triple-cubane isomers in dichloromethane and in chloroform. Density functional calculations on [{Ru(η6-arene)}4Mo4O16] (arene=C6H6, C6H5CH3, 1,3,5-C6H3(CH3)3, 1,4-CH3C6H4CH(CH3)2, C6(CH3)6) suggest that the windmill form is intrinsically more stable, provided the complexes are assumed to be isolated. Intramolecular electrostatic interactions and steric bulk induced by substituted arenes were found to modulate but not to reverse the energy difference between the isomers. The stability of the triple-cubane isomers should therefore be accounted for by effects of the surroundings that induce a shift in the energy balance between both forms.
  • Publication
    Accès libre
    Oxidative functionalisation of alkanes: synthesis, molecular structure and catalytic implications of anionic vanadium(V) oxo and peroxo complexes containing bidentate N,O ligands
    (1999) ;
    Stanislas, Sandrine
    ;
    Shulpin, Georgiy B.
    ;
    Nizova, Galina V.
    ;
    ;
    Neels, Antonia
    ;
    ;
    Claude, Saturnin
    A mixture of [NBu4][VO3] and pyrazine-2-carboxylic acid (Hpca) in acetonitrile catalysed smoothly the reaction of alkanes RH (R = CH3 or C6H11) with molecular oxygen (from air) and hydrogen peroxide to give the corresponding alkyl hydroperoxide ROOH as the primary product. The oxo and peroxo anions [VO2(pca)2] and [VO(O2)(pca)2], isolated as the tetrabutylammonium or ammonium salts from acetonitrile solution and fully characterised by single crystal structure analyses, are assumed to be involved in the catalytic process. A screening of different N,O ligands showed Hpca to be the best co-catalyst, while anthranilic acid (Hana) proved to be almost inactive. The isolation and crystal structure analysis of the analogous oxo compound [NBu4][VO2(ana)2] showed a fundamental difference in the co-ordination of the bidentate N,O ligands which might explain the different catalytic activities: while in [VO2(pca)2] the two pca ligands are bonded through a nitrogen and an oxygen atom (N,O co-ordination), in [VO2(ana)2] the two ana ligands are co-ordinated via two oxygen atoms of the carboxylato group (O,O co-ordination).
  • Publication
    Accès libre
    Tri- and Tetranuclear Mixed-Metal Clusters Containing Alkyne Ligands : Synthesis and Structure of [Ru3Ir(CO)11(RCCR’)]-, [Ru2Ir(CO)9(RCCR’)]-, and [HRu2Ir(CO)9(RCCR’)]
    (1999)
    Ferrand, Vincent
    ;
    ;
    Neels, Antonia
    ;
    The tetrahedral cluster anion [Ru3Ir(CO)13]- (1) reacts with internal alkynes RCCR to afford the alkyne derivatives [Ru3Ir(CO)11(RCCR)]- (2: R = R’ = Ph; 3: R = R’ = Et; 4: R = Ph; R’ = Me; 5: R = R’ = Me) which have a butterfly arrangement of the Ru3Ir skeleton in which the alkyne is coordinated in a μ42 fashion. Under CO pressure they undergo fragmentation to give the trinuclear cluster anions [Ru2Ir(CO)9 (RCCR)]- (6: R = R’ = Ph; 7: R = R’ = Et; 8: R’ = Ph; R’ = Me; 9: R = R’ = Me), in which the alkyne ligand is coordinated in a μ32 parallel fashion. Protonation of these trinuclear anions leads to the formation of the corresponding neutral hydrido clusters [HRu2Ir(CO)9 (RCCR)] (10: R = R’ = Ph; 11: R = R’ = Et; 12: R = Ph; R’ = Me; 13: R = R’ = Me). The protonation of the butterfly anions 2 and 3, however, gives rise to the formation of the neutral tetrahedral clusters [HRu3Ir(CO)11(RCCR)] (14: R = R’ = Ph and 15: R = R’ = Et), respectively. The analogous clusters [HRu3Ir(CO)11(PhCCCH3)] (16) and [HRu3Ir(CO)11(CH3CCCH3)] (17) are only accessible from the reaction of the neutral cluster [HRu3Ir(CO)13] with the corresponding alkynes. The complexes 2, 4, 5, 6, 10, 12 and 15 are characterised by X-ray structure analysis.
  • Publication
    Accès libre
    New Diphosphine Ligands Containing Ethyleneglycol and Amino Alcohol Spacers for the Rhodium-Catalyzed Carbonylation of Methanol
    (2002)
    Thomas, Christophe M.
    ;
    Mafua, Roger
    ;
    ;
    Rusanov, Eduard
    ;
    ;
    The new diphosphine ligands Ph2PC6H4C(O)X(CH2)2OC(O)C6H4PPh2 (1: X=NH; 2: X=NPh; 3: X=O) and Ph2PC6H4C(O)O(CH2)2O(CH2)2OC(O)C6H4PPh2 (5) as well as the monophosphine ligand Ph2PC6H4C(O)X(CH2)2OH (4) have been prepared from 2-diphenylphosphinobenzoic acid and the corresponding amino alcohols or diols. Coordination of the diphosphine ligands to rhodium, iridium, and platinum resulted in the formation of the square-planar complexes [(PP)Rh(CO)Cl] (6: PP=1; 7: PP=2; 8: PP=3), [(PP)Rh(CO)Cl]2 (9: PP=5), [(P-P)Ir(cod)Cl] (10: PP=1; 11: PP=2; 12: PP=3), [(PP)Ir(CO)Cl] (13: PP=1; 14: PP=2; 15: PP=3), and [(PP)PtI2] (18: PP=2). In all complexes, the diphosphine ligands are trans coordinated to the metal center, thanks to the large spacer groups, which allow the two phosphorus atoms to occupy opposite positions in the square-planar coordination geometry. The trans coordination is demonstrated unambiguously by the single-crystal X-ray structure analysis of complex 18. In the case of the diphosphine ligand 5, the spacer group is so large that dinuclear complexes with ligand 5 in bridging positions are formed, maintaining the trans coordination of the P atoms on each metal center, as shown by the crystal structure analysis of 9. The monophosphine ligand 4 reacts with [{Ir(cod)Cl}2] (cod=cyclooctadiene) to give the simple derivative [(4)Ir(cod)Cl] (16) which is converted into the carbonyl complex [(4)Ir(CO)2Cl] (17) with carbon monoxide. The crystal structure analysis of 16 also reveals a square-planar coordination geometry in which the phosphine ligand occupies a position cis with respect to the chloro ligand. The diphosphine ligands 1, 2, 3, and 5 have been tested as cocatalysts in combination with the catalyst precursors [{Rh(CO)2Cl}2] and [{Ir(cod)Cl}2] or [H2IrCl6] for the carbonylation of methanol at 170 °C and 22 bar CO. The best results (TON 800 after 15 min) are obtained for the combination 2/[{Rh(CO)2Cl}2]. After the catalytic reaction, complex 7 is identified in the reaction mixture and can be isolated; it is active for further runs without loss of catalytic activity.
  • Publication
    Accès libre
    Fixation and spontaneous dehydrogenation of methanol on a triruthenium–iridium framework: synthesis and structure of the cluster anion [HRu3Ir(CO)12(OMe)]
    (1999) ;
    Plasseraud, Laurent
    ;
    Ferrand, Vincent
    ;
    The anionic mixed-metal cluster [Ru3Ir(CO)13]1, found to be catalytically active in the carbonylation of methanol, reacts with methanol at 70 °C to give, with O–H activation of the substrate, the cluster anion [HRu3Ir(CO)12(OMe)]2, which upon prolonged reaction loses formaldehyde to give the cluster anion [H2Ru3Ir(CO)12]3; both anions 2 and 3 crystallise together as the double-salt [N(PPh3)2]2[HRu3Ir(CO)12(OMe)][H2Ru3Ir(CO)12] the single-crystal X-ray structure analysis of which reveals a butterfly Ru3Ir skeleton for 2 and a tetrahedral Ru3Ir skeleton for 3.
  • Publication
    Accès libre
    Saturated and unsaturated triruthenium clusters containing three sterically demanding phosphine ligands : synthesis and structure of [Ru3(CO)9(PCy3)3] and [Ru3H2(CO)6(PCy3)3]
    (1998) ;
    Godefroy, Isabelle
    ;
    Ferrand, Vincent
    ;
    Neels, Antonia
    ;
    The reaction of Na[Ru3H(CO)11] with an excess of tricyclohexylphosphine in methanol afforded, depending on the reaction conditions, the tri-substituted clusters [Ru3(CO)9(PCy3)3] (48e) and [Ru3H2(CO)6(PCy3)3] (44e), inaccessible hitherto.
  • Publication
    Accès libre
    Triruthenium–iridium clusters containing alkyne ligands : synthesis, structure, and catalytic implications of [(µ-H)IrRu3(CO)1132-PhC≡CPh)] and [IrRu3(CO)1042-PhC≡CPh)(µ-η2-PhC=CHPh)]
    (1998)
    Ferrand, Vincent
    ;
    ;
    Neels, Antonia
    ;
    The mixed-metal cluster [HIrRu3(CO)13] 1 reacts with one equivalent of disubstituted alkynes RC≡CR to give [HIrRu3(CO)113-η2-RC≡CR)] (R = Ph 2; R = Me 3), with a second equivalent of the alkyne the clusters [IrRu3(CO)104-η2-RC≡CR)(µ-η2-RC=CHR)] (R = Ph 4; R = Me 5) are obtained. The single-crystal X-ray structure analyses of 2 and 3 show these clusters to have a tetrahedral Ru3Ir framework containing the alkyne ligand coordinated in a parallel fashion over the Ru3 face of the metal skeleton. In contrast, the clusters 4 and 5 consist of a butterfly arrangement of the Ru3Ir framework with the alkyne ligand coordinated to all four metal atoms, giving an overall octahedral Ru3IrC2 skeleton, as demonstrated by the single-crystal structure analysis of 4. Cluster 1 is an excellent catalyst for the hydrogenation of diphenylacetylene to give stilbene (catalytic turnover number 990 within 15 min), clusters 2 and 4 are also catalytically active but seem to represent side-channels of the catalytic cycle.
  • Publication
    Accès libre
    The mixed-metal carbonyl cluster anion [Ru3Ir(CO)13] : synthesis, molecular structure, fluxionality, reactivity
    (1997) ;
    Haak, Susanne
    ;
    Ferrand, Vincent
    ;
    The new cluster anion [Ru3Ir(CO)13]1 was synthesized in high yield from [Ru3(CO)12] and [Ir(CO)4]. The single-crystal X-ray structure analysis of the bis(triphenylphosphoranylidene)ammonium salt revealed the presence of two isomers, [Ru3Ir(CO)11(µ-CO)2]1a and Ru3Ir(CO)9(µ-CO)4]1b in the same crystal. Both 1a and 1b present a tetrahedral Ru3Ir framework, differing only by the number of bridging carbonyl ligands. Variable-temperature 13C NMR spectroscopic studies of 1 revealed the fluxionality of the carbonyl ligands and the interconversion of both isomers in solution. Protonation of 1 gave the neutral cluster [HRu3Ir(CO)13] 2, whereas reaction of 1 with molecular hydrogen yielded the anion [H2Ru3Ir(CO)12]3. Either hydrogenation of 2 or protonation of 3 gave [H3Ru3Ir(CO)12] 4. The tetrahedral structure of the hydrido derivatives was confirmed by a single-crystal X-ray structure analysis of the bis(triphenylphosphoranylidene)ammonium salt of 3.