Login

Publications

Title  
 
Book chapters
Affolderbach, C., Gruet, F., Miletic, D., & Mileti, G. (2009). Optimizing a high-stability cw laser-pumped Rubidium gas-cell frequency standard. In 7th Symposium on Frequency Standards and Metrology (pp. 363-367). USA: Maleki Lute.
   
Journal Articles
Almat, N., Gharavipour, M., Moreno, W., Gruet, F., Affolderbach, C., & Mileti, G. (2019). Long-Term Stability Analysis Towards < 10-14 Level for a Highly Compact POP Rb Cell Atomic Clock. IEEE Tran. on Ultrasonics, Ferroelectronics and Frequency Control, 1, 1-1.
   
Almat, N., Moreno, W., Pellaton, M., Gruet, F., Affolderbach, C., & Mileti, G. (2018). Characterization of Frequency-Doubled 1.5-μm Lasers for High-Performance Rb Clocks. We report on the characterization of two fiber-coupled 1.5-μm diode lasers, frequency-doubled and stabilized to Rubidium (Rb) atomic resonances at 780 nm. Such laser systems are of interest in view of their implementation in Rb vapor-cell atomic clocks, as an alternative to lasers emitting directly at 780 nm. The spectral properties and the instabilities of the frequency-doubled lasers are evaluated against a state-of-the-art compact Rb-stabilized laser system based on a distributed-feedback laser diode emitting at 780 nm. All three lasers are frequency stabilized using essentially identical Doppler-free spectroscopy schemes. The long-term optical power fluctuations at 780 nm are measured, simultaneously with the frequency instability measurements done by three beat notes established between the three lasers. One of the frequency-doubled laser systems shows at 780 nm excellent spectral properties. Its relative intensity noise <;10 -12 Hz -1 is one order of magnitude lower than the reference 780-nm laser, and the frequency noise <;10 6 Hz 2 /Hz is limited by the laser current source. Its optical frequency instability is <; 4 ×10 -12 at τ = 1 s, limited by the reference laser, and better than 1 × 10 -11 at all timescales up to one day. We also evaluate the impact of the laser spectral properties and instabilities on the Rb atomic clock performance, in particular taking into account the light-shift effect. Optical power instabilities on long-term timescales, largely originating from the frequency-doubling stage, are identified as a limitation in view of high-performance Rb atomic clocks, 65(6), 919-926.
   
Almat, N., Pellaton, M., Moreno, W., Gruet, F., Affolderbach, C., & Mileti, G. (2018). Rb vapor-cell clock demonstration with a frequency-doubled telecom laser. Applied Optics, 57, 4707-4713.
   
Gharavipour, M., Affolderbach, C., Gruet, F., Mileti, G., Jelenkovic, B., Radojicic, I., & Krmpot, A. (2017). Optically-detected spin-echo method for relaxation times measurements in a Rb atomic vapor. New Journal of Physics, 19(art. no 063027), 1-2.
   
Matthey-De-L'Endroit, R., Mileti, G., Gruet, F., Salvadé, Y., Przygodda, F., Rohner, M., Meyer, Y., Gloriot, O., Llera, M., Di Francesco, J., & Polster, A. (2016). Interferometric measurements beyond the coherence length of the laser source. Optics Express, 24(19), 21729-21743.
   
Matthey-De-L'Endroit, R., Moreno, W., Gruet, F., Brochard, P., Schilt, S., & Mileti, G. (2016). Rb-stabilized laser at 1572 nm for CO2 monitoring. Journal of Physics : Conference Series, 723, 1-2.
   
Gharavipour, M., Affolderbach, C., Kang, S., Bandi Nagabhushan, T., Gruet, F., Pellaton, M., & Mileti, G. (2016). High performance vapour-cell frequency standards. Journal of Physics : Conference Series, 723, 1-2.
   
Abdullah, S., Affolderbach, C., & Gruet, F. (2015). Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks. Applied Physics Letters, 106, 1-2.
   
Matthey-De-L'Endroit, R., Gruet, F., Schilt, S., & Mileti, G. (2015). Compact rubidium-stabilized multi-frequency reference source in the 1.55-μm region. Optics Letters, 40(11), 2576-2579.
   
Kang, S., Gharavipour, M., Affolderbach, C., Gruet, F., & Mileti, G. (2015). Demonstration of a high-performance pulsed optically pumped Rb clock based on a compact magnetron-type microwave cavity. Journal of Applied Physics, 117(10), 104510-104514.
   
Gruet, F., Vecchio, F., Affolderbach, C., Pétremand, Y., De Rooij, N. F., Maeder, T., & Mileti, G. (2013). A miniature frequency-stabilized VCSEL system emitting at 795nm based on LTCC modules. Optics and Lasers in Engineering, 51(8), 1023-1027.
   
Gruet, F., Al-Samaneh, A., Kroemer, E., Bimboes, L., Miletic, D., Affolderbach, C., Wahl, D., Boudot, R., Mileti, G., & Michalzik, R. (2013). Metrological characterization of custom-designed 894.6 nm VCSELs for miniature atomic clocks. Optics express, 21(5), 5781-5792.
   
Micalizio, S., Godone, A., Calosso, C., Levi, F., Affolderbach, C., & Gruet, F. (2012). Pulsed Optically Pumped Rubidium Clock With High Frequency-Stability Performance. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(3), 457-462.
   
Conference papers
Von Bandel, N., Garcia, M., Lecomte, M., Larrue, A., Robert, Y., Vinet, E., Driss, O., Parilaud, O., Krakowski, M., Gruet, F., Matthey-De-L'Endroit, R., & Mileti, G. (2016, 13 February). DFB-ridge laser diodes at 894 nm for Cesium atomic clocks. Paper presented at SPIE OPTO, San Francisco.
   
Gharavipour, M., Affolderbach, C., Kang, S., Bandi Nagabhushan, T., Gruet, F., Pellaton, M. L., & Mileti, G. (2015, 27 October). High performance vapour-cell frequency standards. Paper presented at 8th Symposium on Frequency Standards and Metrology 2015, Potsdam, Allemagne.
   
Di Francesco, J., Gruet, F., Schori, C., Affolderbach, C., Matthey-De-L'Endroit, R., Salvadé, Y., Petremand, Y., & De Rooij, N. (2010, 12 April). Evaluation of the frequency stability of a VCSEL locked to a micro-fabricated Rubidium vapour cell. Paper presented at SPIE Photonics Europe, Bruxelles (Belgique).
   
 
Page 1 of 1
*Bibliographic citation format : APA5